| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐵 ∈ 𝑉 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) |
| 2 |
|
imassrn |
⊢ ( 𝐻 “ 𝑥 ) ⊆ ran 𝐻 |
| 3 |
|
isof1o |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 4 |
|
f1of |
⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 5 |
|
frn |
⊢ ( 𝐻 : 𝐴 ⟶ 𝐵 → ran 𝐻 ⊆ 𝐵 ) |
| 6 |
3 4 5
|
3syl |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ran 𝐻 ⊆ 𝐵 ) |
| 7 |
2 6
|
sstrid |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ) |
| 8 |
|
ssexg |
⊢ ( ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐻 “ 𝑥 ) ∈ V ) |
| 9 |
7 8
|
sylan |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐵 ∈ 𝑉 ) → ( 𝐻 “ 𝑥 ) ∈ V ) |
| 10 |
1 9
|
isofrlem |
⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐵 ∈ 𝑉 ) → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |