Metamath Proof Explorer


Theorem isofr2

Description: A weak form of isofr that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion isofr2 ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐵𝑉 ) → ( 𝑆 Fr 𝐵𝑅 Fr 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐵𝑉 ) → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) )
2 imassrn ( 𝐻𝑥 ) ⊆ ran 𝐻
3 isof1o ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴1-1-onto𝐵 )
4 f1of ( 𝐻 : 𝐴1-1-onto𝐵𝐻 : 𝐴𝐵 )
5 frn ( 𝐻 : 𝐴𝐵 → ran 𝐻𝐵 )
6 3 4 5 3syl ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ran 𝐻𝐵 )
7 2 6 sstrid ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → ( 𝐻𝑥 ) ⊆ 𝐵 )
8 ssexg ( ( ( 𝐻𝑥 ) ⊆ 𝐵𝐵𝑉 ) → ( 𝐻𝑥 ) ∈ V )
9 7 8 sylan ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐵𝑉 ) → ( 𝐻𝑥 ) ∈ V )
10 1 9 isofrlem ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝐵𝑉 ) → ( 𝑆 Fr 𝐵𝑅 Fr 𝐴 ) )