Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
1 2
|
opeldm |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) |
4 |
3
|
a1i |
⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴 ) ) |
5 |
|
ssel |
⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ I ) ) |
6 |
4 5
|
jcad |
⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ) ) |
7 |
|
df-br |
⊢ ( 𝑥 I 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) |
8 |
2
|
ideq |
⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
9 |
7 8
|
bitr3i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ I ↔ 𝑥 = 𝑦 ) |
10 |
1
|
eldm2 |
⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
11 |
|
opeq2 |
⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑥 〉 = 〈 𝑥 , 𝑦 〉 ) |
12 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
13 |
12
|
biimprcd |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
14 |
9 13
|
syl5bi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ I → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
15 |
5 14
|
sylcom |
⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
16 |
15
|
exlimdv |
⊢ ( 𝐴 ⊆ I → ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
17 |
10 16
|
syl5bi |
⊢ ( 𝐴 ⊆ I → ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ) |
18 |
12
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑥 〉 ∈ 𝐴 ) ↔ ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
19 |
17 18
|
syl5ibcom |
⊢ ( 𝐴 ⊆ I → ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
20 |
9 19
|
syl5bi |
⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ I → ( 𝑥 ∈ dom 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) |
21 |
20
|
impcomd |
⊢ ( 𝐴 ⊆ I → ( ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
22 |
6 21
|
impbid |
⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ) ) |
23 |
2
|
opelresi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ dom 𝐴 ) ↔ ( 𝑥 ∈ dom 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ) |
24 |
22 23
|
bitr4di |
⊢ ( 𝐴 ⊆ I → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ dom 𝐴 ) ) ) |
25 |
24
|
alrimivv |
⊢ ( 𝐴 ⊆ I → ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ dom 𝐴 ) ) ) |
26 |
|
reli |
⊢ Rel I |
27 |
|
relss |
⊢ ( 𝐴 ⊆ I → ( Rel I → Rel 𝐴 ) ) |
28 |
26 27
|
mpi |
⊢ ( 𝐴 ⊆ I → Rel 𝐴 ) |
29 |
|
relres |
⊢ Rel ( I ↾ dom 𝐴 ) |
30 |
|
eqrel |
⊢ ( ( Rel 𝐴 ∧ Rel ( I ↾ dom 𝐴 ) ) → ( 𝐴 = ( I ↾ dom 𝐴 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ dom 𝐴 ) ) ) ) |
31 |
28 29 30
|
sylancl |
⊢ ( 𝐴 ⊆ I → ( 𝐴 = ( I ↾ dom 𝐴 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ dom 𝐴 ) ) ) ) |
32 |
25 31
|
mpbird |
⊢ ( 𝐴 ⊆ I → 𝐴 = ( I ↾ dom 𝐴 ) ) |
33 |
|
resss |
⊢ ( I ↾ dom 𝐴 ) ⊆ I |
34 |
|
sseq1 |
⊢ ( 𝐴 = ( I ↾ dom 𝐴 ) → ( 𝐴 ⊆ I ↔ ( I ↾ dom 𝐴 ) ⊆ I ) ) |
35 |
33 34
|
mpbiri |
⊢ ( 𝐴 = ( I ↾ dom 𝐴 ) → 𝐴 ⊆ I ) |
36 |
32 35
|
impbii |
⊢ ( 𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴 ) ) |