Metamath Proof Explorer


Theorem istdrg2

Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istdrg2.m 𝑀 = ( mulGrp ‘ 𝑅 )
istdrg2.b 𝐵 = ( Base ‘ 𝑅 )
istdrg2.z 0 = ( 0g𝑅 )
Assertion istdrg2 ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) )

Proof

Step Hyp Ref Expression
1 istdrg2.m 𝑀 = ( mulGrp ‘ 𝑅 )
2 istdrg2.b 𝐵 = ( Base ‘ 𝑅 )
3 istdrg2.z 0 = ( 0g𝑅 )
4 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
5 1 4 istdrg ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) )
6 2 4 3 isdrng ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) ) )
7 6 simprbi ( 𝑅 ∈ DivRing → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) )
8 7 adantl ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) → ( Unit ‘ 𝑅 ) = ( 𝐵 ∖ { 0 } ) )
9 8 oveq2d ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) → ( 𝑀s ( Unit ‘ 𝑅 ) ) = ( 𝑀s ( 𝐵 ∖ { 0 } ) ) )
10 9 eleq1d ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) → ( ( 𝑀s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ↔ ( 𝑀s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) )
11 10 pm5.32i ( ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) )
12 df-3an ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) )
13 df-3an ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) ↔ ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ) ∧ ( 𝑀s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) )
14 11 12 13 3bitr4i ( ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀s ( Unit ‘ 𝑅 ) ) ∈ TopGrp ) ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) )
15 5 14 bitri ( 𝑅 ∈ TopDRing ↔ ( 𝑅 ∈ TopRing ∧ 𝑅 ∈ DivRing ∧ ( 𝑀s ( 𝐵 ∖ { 0 } ) ) ∈ TopGrp ) )