| Step | Hyp | Ref | Expression | 
						
							| 1 |  | istdrg2.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 2 |  | istdrg2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 3 |  | istdrg2.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 5 | 1 4 | istdrg | ⊢ ( 𝑅  ∈  TopDRing  ↔  ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing  ∧  ( 𝑀  ↾s  ( Unit ‘ 𝑅 ) )  ∈  TopGrp ) ) | 
						
							| 6 | 2 4 3 | isdrng | ⊢ ( 𝑅  ∈  DivRing  ↔  ( 𝑅  ∈  Ring  ∧  ( Unit ‘ 𝑅 )  =  ( 𝐵  ∖  {  0  } ) ) ) | 
						
							| 7 | 6 | simprbi | ⊢ ( 𝑅  ∈  DivRing  →  ( Unit ‘ 𝑅 )  =  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing )  →  ( Unit ‘ 𝑅 )  =  ( 𝐵  ∖  {  0  } ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing )  →  ( 𝑀  ↾s  ( Unit ‘ 𝑅 ) )  =  ( 𝑀  ↾s  ( 𝐵  ∖  {  0  } ) ) ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing )  →  ( ( 𝑀  ↾s  ( Unit ‘ 𝑅 ) )  ∈  TopGrp  ↔  ( 𝑀  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  TopGrp ) ) | 
						
							| 11 | 10 | pm5.32i | ⊢ ( ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing )  ∧  ( 𝑀  ↾s  ( Unit ‘ 𝑅 ) )  ∈  TopGrp )  ↔  ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing )  ∧  ( 𝑀  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  TopGrp ) ) | 
						
							| 12 |  | df-3an | ⊢ ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing  ∧  ( 𝑀  ↾s  ( Unit ‘ 𝑅 ) )  ∈  TopGrp )  ↔  ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing )  ∧  ( 𝑀  ↾s  ( Unit ‘ 𝑅 ) )  ∈  TopGrp ) ) | 
						
							| 13 |  | df-3an | ⊢ ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing  ∧  ( 𝑀  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  TopGrp )  ↔  ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing )  ∧  ( 𝑀  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  TopGrp ) ) | 
						
							| 14 | 11 12 13 | 3bitr4i | ⊢ ( ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing  ∧  ( 𝑀  ↾s  ( Unit ‘ 𝑅 ) )  ∈  TopGrp )  ↔  ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing  ∧  ( 𝑀  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  TopGrp ) ) | 
						
							| 15 | 5 14 | bitri | ⊢ ( 𝑅  ∈  TopDRing  ↔  ( 𝑅  ∈  TopRing  ∧  𝑅  ∈  DivRing  ∧  ( 𝑀  ↾s  ( 𝐵  ∖  {  0  } ) )  ∈  TopGrp ) ) |