Metamath Proof Explorer


Theorem istdrg2

Description: A topological-ring division ring is a topological division ring iff the group of nonzero elements is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istdrg2.m M=mulGrpR
istdrg2.b B=BaseR
istdrg2.z 0˙=0R
Assertion istdrg2 RTopDRingRTopRingRDivRingM𝑠B0˙TopGrp

Proof

Step Hyp Ref Expression
1 istdrg2.m M=mulGrpR
2 istdrg2.b B=BaseR
3 istdrg2.z 0˙=0R
4 eqid UnitR=UnitR
5 1 4 istdrg RTopDRingRTopRingRDivRingM𝑠UnitRTopGrp
6 2 4 3 isdrng RDivRingRRingUnitR=B0˙
7 6 simprbi RDivRingUnitR=B0˙
8 7 adantl RTopRingRDivRingUnitR=B0˙
9 8 oveq2d RTopRingRDivRingM𝑠UnitR=M𝑠B0˙
10 9 eleq1d RTopRingRDivRingM𝑠UnitRTopGrpM𝑠B0˙TopGrp
11 10 pm5.32i RTopRingRDivRingM𝑠UnitRTopGrpRTopRingRDivRingM𝑠B0˙TopGrp
12 df-3an RTopRingRDivRingM𝑠UnitRTopGrpRTopRingRDivRingM𝑠UnitRTopGrp
13 df-3an RTopRingRDivRingM𝑠B0˙TopGrpRTopRingRDivRingM𝑠B0˙TopGrp
14 11 12 13 3bitr4i RTopRingRDivRingM𝑠UnitRTopGrpRTopRingRDivRingM𝑠B0˙TopGrp
15 5 14 bitri RTopDRingRTopRingRDivRingM𝑠B0˙TopGrp