Metamath Proof Explorer


Theorem isvciOLD

Description: Properties that determine a complex vector space. (Contributed by NM, 5-Nov-2006) Obsolete version of iscvsi . (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses isvciOLD.1 𝐺 ∈ AbelOp
isvciOLD.2 dom 𝐺 = ( 𝑋 × 𝑋 )
isvciOLD.3 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋
isvciOLD.4 ( 𝑥𝑋 → ( 1 𝑆 𝑥 ) = 𝑥 )
isvciOLD.5 ( ( 𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋 ) → ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) )
isvciOLD.6 ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋 ) → ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
isvciOLD.7 ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋 ) → ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) )
isvciOLD.8 𝑊 = ⟨ 𝐺 , 𝑆
Assertion isvciOLD 𝑊 ∈ CVecOLD

Proof

Step Hyp Ref Expression
1 isvciOLD.1 𝐺 ∈ AbelOp
2 isvciOLD.2 dom 𝐺 = ( 𝑋 × 𝑋 )
3 isvciOLD.3 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋
4 isvciOLD.4 ( 𝑥𝑋 → ( 1 𝑆 𝑥 ) = 𝑥 )
5 isvciOLD.5 ( ( 𝑦 ∈ ℂ ∧ 𝑥𝑋𝑧𝑋 ) → ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) )
6 isvciOLD.6 ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋 ) → ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) )
7 isvciOLD.7 ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋 ) → ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) )
8 isvciOLD.8 𝑊 = ⟨ 𝐺 , 𝑆
9 5 3com12 ( ( 𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧𝑋 ) → ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) )
10 9 3expa ( ( ( 𝑥𝑋𝑦 ∈ ℂ ) ∧ 𝑧𝑋 ) → ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) )
11 10 ralrimiva ( ( 𝑥𝑋𝑦 ∈ ℂ ) → ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) )
12 6 7 jca ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝑋 ) → ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) )
13 12 3comr ( ( 𝑥𝑋𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) )
14 13 3expa ( ( ( 𝑥𝑋𝑦 ∈ ℂ ) ∧ 𝑧 ∈ ℂ ) → ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) )
15 14 ralrimiva ( ( 𝑥𝑋𝑦 ∈ ℂ ) → ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) )
16 11 15 jca ( ( 𝑥𝑋𝑦 ∈ ℂ ) → ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) )
17 16 ralrimiva ( 𝑥𝑋 → ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) )
18 4 17 jca ( 𝑥𝑋 → ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) )
19 18 rgen 𝑥𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) )
20 ablogrpo ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp )
21 1 20 ax-mp 𝐺 ∈ GrpOp
22 21 2 grporn 𝑋 = ran 𝐺
23 22 isvcOLD ( ⟨ 𝐺 , 𝑆 ⟩ ∈ CVecOLD ↔ ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) )
24 1 3 19 23 mpbir3an 𝐺 , 𝑆 ⟩ ∈ CVecOLD
25 8 24 eqeltri 𝑊 ∈ CVecOLD