Description: Appending two sets to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunxunsn.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| iunxunpr.2 | ⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) | ||
| Assertion | iunxunpr | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ∪ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 , 𝑌 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ( 𝐶 ∪ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxunsn.1 | ⊢ ( 𝑥 = 𝑋 → 𝐵 = 𝐶 ) | |
| 2 | iunxunpr.2 | ⊢ ( 𝑥 = 𝑌 → 𝐵 = 𝐷 ) | |
| 3 | iunxun | ⊢ ∪ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 , 𝑌 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ { 𝑋 , 𝑌 } 𝐵 ) | |
| 4 | 1 2 | iunxprg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ∪ 𝑥 ∈ { 𝑋 , 𝑌 } 𝐵 = ( 𝐶 ∪ 𝐷 ) ) |
| 5 | 4 | uneq2d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ { 𝑋 , 𝑌 } 𝐵 ) = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ( 𝐶 ∪ 𝐷 ) ) ) |
| 6 | 3 5 | eqtrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ∪ 𝑥 ∈ ( 𝐴 ∪ { 𝑋 , 𝑌 } ) 𝐵 = ( ∪ 𝑥 ∈ 𝐴 𝐵 ∪ ( 𝐶 ∪ 𝐷 ) ) ) |