Step |
Hyp |
Ref |
Expression |
1 |
|
elixp2 |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
2 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
3 |
2
|
sseld |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
4 |
3
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
5 |
4
|
anim2i |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
7 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 𝐵 |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
9 |
6 7 8
|
ffnfvf |
⊢ ( 𝐹 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
10 |
5 9
|
sylibr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝐹 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) → 𝐹 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
12 |
1 11
|
sylbi |
⊢ ( 𝐹 ∈ X 𝑥 ∈ 𝐴 𝐵 → 𝐹 : 𝐴 ⟶ ∪ 𝑥 ∈ 𝐴 𝐵 ) |