| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bracl |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ) |
| 2 |
|
bracl |
⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) → ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ∈ ℂ ) |
| 3 |
|
mulcom |
⊢ ( ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ∈ ℂ ∧ ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ∈ ℂ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) · ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) · ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 5 |
|
bralnfn |
⊢ ( 𝐴 ∈ ℋ → ( bra ‘ 𝐴 ) ∈ LinFn ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( bra ‘ 𝐴 ) ∈ LinFn ) |
| 7 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ∈ ℂ ) |
| 8 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → 𝐵 ∈ ℋ ) |
| 9 |
|
lnfnmul |
⊢ ( ( ( bra ‘ 𝐴 ) ∈ LinFn ∧ ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ·ℎ 𝐵 ) ) = ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) · ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ·ℎ 𝐵 ) ) = ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) · ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) ) ) |
| 11 |
4 10
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) · ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ) = ( ( bra ‘ 𝐴 ) ‘ ( ( ( bra ‘ 𝐶 ) ‘ 𝐷 ) ·ℎ 𝐵 ) ) ) |