Metamath Proof Explorer


Theorem keephyp2v

Description: Keep a hypothesis containing 2 class variables (for use with the weak deduction theorem dedth ). (Contributed by NM, 16-Apr-2005)

Ref Expression
Hypotheses keephyp2v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜓𝜒 ) )
keephyp2v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒𝜃 ) )
keephyp2v.3 ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏𝜂 ) )
keephyp2v.4 ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂𝜃 ) )
keephyp2v.5 𝜓
keephyp2v.6 𝜏
Assertion keephyp2v 𝜃

Proof

Step Hyp Ref Expression
1 keephyp2v.1 ( 𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜓𝜒 ) )
2 keephyp2v.2 ( 𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜒𝜃 ) )
3 keephyp2v.3 ( 𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) → ( 𝜏𝜂 ) )
4 keephyp2v.4 ( 𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) → ( 𝜂𝜃 ) )
5 keephyp2v.5 𝜓
6 keephyp2v.6 𝜏
7 iftrue ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐴 )
8 7 eqcomd ( 𝜑𝐴 = if ( 𝜑 , 𝐴 , 𝐶 ) )
9 8 1 syl ( 𝜑 → ( 𝜓𝜒 ) )
10 iftrue ( 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐵 )
11 10 eqcomd ( 𝜑𝐵 = if ( 𝜑 , 𝐵 , 𝐷 ) )
12 11 2 syl ( 𝜑 → ( 𝜒𝜃 ) )
13 9 12 bitrd ( 𝜑 → ( 𝜓𝜃 ) )
14 5 13 mpbii ( 𝜑𝜃 )
15 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐶 ) = 𝐶 )
16 15 eqcomd ( ¬ 𝜑𝐶 = if ( 𝜑 , 𝐴 , 𝐶 ) )
17 16 3 syl ( ¬ 𝜑 → ( 𝜏𝜂 ) )
18 iffalse ( ¬ 𝜑 → if ( 𝜑 , 𝐵 , 𝐷 ) = 𝐷 )
19 18 eqcomd ( ¬ 𝜑𝐷 = if ( 𝜑 , 𝐵 , 𝐷 ) )
20 19 4 syl ( ¬ 𝜑 → ( 𝜂𝜃 ) )
21 17 20 bitrd ( ¬ 𝜑 → ( 𝜏𝜃 ) )
22 6 21 mpbii ( ¬ 𝜑𝜃 )
23 14 22 pm2.61i 𝜃