| Step | Hyp | Ref | Expression | 
						
							| 1 |  | keephyp2v.1 |  |-  ( A = if ( ph , A , C ) -> ( ps <-> ch ) ) | 
						
							| 2 |  | keephyp2v.2 |  |-  ( B = if ( ph , B , D ) -> ( ch <-> th ) ) | 
						
							| 3 |  | keephyp2v.3 |  |-  ( C = if ( ph , A , C ) -> ( ta <-> et ) ) | 
						
							| 4 |  | keephyp2v.4 |  |-  ( D = if ( ph , B , D ) -> ( et <-> th ) ) | 
						
							| 5 |  | keephyp2v.5 |  |-  ps | 
						
							| 6 |  | keephyp2v.6 |  |-  ta | 
						
							| 7 |  | iftrue |  |-  ( ph -> if ( ph , A , C ) = A ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ph -> A = if ( ph , A , C ) ) | 
						
							| 9 | 8 1 | syl |  |-  ( ph -> ( ps <-> ch ) ) | 
						
							| 10 |  | iftrue |  |-  ( ph -> if ( ph , B , D ) = B ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ph -> B = if ( ph , B , D ) ) | 
						
							| 12 | 11 2 | syl |  |-  ( ph -> ( ch <-> th ) ) | 
						
							| 13 | 9 12 | bitrd |  |-  ( ph -> ( ps <-> th ) ) | 
						
							| 14 | 5 13 | mpbii |  |-  ( ph -> th ) | 
						
							| 15 |  | iffalse |  |-  ( -. ph -> if ( ph , A , C ) = C ) | 
						
							| 16 | 15 | eqcomd |  |-  ( -. ph -> C = if ( ph , A , C ) ) | 
						
							| 17 | 16 3 | syl |  |-  ( -. ph -> ( ta <-> et ) ) | 
						
							| 18 |  | iffalse |  |-  ( -. ph -> if ( ph , B , D ) = D ) | 
						
							| 19 | 18 | eqcomd |  |-  ( -. ph -> D = if ( ph , B , D ) ) | 
						
							| 20 | 19 4 | syl |  |-  ( -. ph -> ( et <-> th ) ) | 
						
							| 21 | 17 20 | bitrd |  |-  ( -. ph -> ( ta <-> th ) ) | 
						
							| 22 | 6 21 | mpbii |  |-  ( -. ph -> th ) | 
						
							| 23 | 14 22 | pm2.61i |  |-  th |