Metamath Proof Explorer


Theorem kmlem6

Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion kmlem6 ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝜑𝐴 = ∅ ) ) → ∀ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) )

Proof

Step Hyp Ref Expression
1 r19.26 ( ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ ∧ ∀ 𝑤𝑥 ( 𝜑𝐴 = ∅ ) ) ↔ ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝜑𝐴 = ∅ ) ) )
2 n0 ( 𝑧 ≠ ∅ ↔ ∃ 𝑣 𝑣𝑧 )
3 2 biimpi ( 𝑧 ≠ ∅ → ∃ 𝑣 𝑣𝑧 )
4 ne0i ( 𝑣𝐴𝐴 ≠ ∅ )
5 4 necon2bi ( 𝐴 = ∅ → ¬ 𝑣𝐴 )
6 5 imim2i ( ( 𝜑𝐴 = ∅ ) → ( 𝜑 → ¬ 𝑣𝐴 ) )
7 6 ralimi ( ∀ 𝑤𝑥 ( 𝜑𝐴 = ∅ ) → ∀ 𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) )
8 7 alrimiv ( ∀ 𝑤𝑥 ( 𝜑𝐴 = ∅ ) → ∀ 𝑣𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) )
9 19.29r ( ( ∃ 𝑣 𝑣𝑧 ∧ ∀ 𝑣𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) ) → ∃ 𝑣 ( 𝑣𝑧 ∧ ∀ 𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) ) )
10 df-rex ( ∃ 𝑣𝑧𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) ↔ ∃ 𝑣 ( 𝑣𝑧 ∧ ∀ 𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) ) )
11 9 10 sylibr ( ( ∃ 𝑣 𝑣𝑧 ∧ ∀ 𝑣𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) ) → ∃ 𝑣𝑧𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) )
12 3 8 11 syl2an ( ( 𝑧 ≠ ∅ ∧ ∀ 𝑤𝑥 ( 𝜑𝐴 = ∅ ) ) → ∃ 𝑣𝑧𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) )
13 12 ralimi ( ∀ 𝑧𝑥 ( 𝑧 ≠ ∅ ∧ ∀ 𝑤𝑥 ( 𝜑𝐴 = ∅ ) ) → ∀ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) )
14 1 13 sylbir ( ( ∀ 𝑧𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧𝑥𝑤𝑥 ( 𝜑𝐴 = ∅ ) ) → ∀ 𝑧𝑥𝑣𝑧𝑤𝑥 ( 𝜑 → ¬ 𝑣𝐴 ) )