Metamath Proof Explorer


Theorem latnlej

Description: An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012)

Ref Expression
Hypotheses latlej.b 𝐵 = ( Base ‘ 𝐾 )
latlej.l = ( le ‘ 𝐾 )
latlej.j = ( join ‘ 𝐾 )
Assertion latnlej ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ¬ 𝑋 ( 𝑌 𝑍 ) ) → ( 𝑋𝑌𝑋𝑍 ) )

Proof

Step Hyp Ref Expression
1 latlej.b 𝐵 = ( Base ‘ 𝐾 )
2 latlej.l = ( le ‘ 𝐾 )
3 latlej.j = ( join ‘ 𝐾 )
4 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵 ) → 𝑌 ( 𝑌 𝑍 ) )
5 4 3adant3r1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌 ( 𝑌 𝑍 ) )
6 breq1 ( 𝑋 = 𝑌 → ( 𝑋 ( 𝑌 𝑍 ) ↔ 𝑌 ( 𝑌 𝑍 ) ) )
7 5 6 syl5ibrcom ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 = 𝑌𝑋 ( 𝑌 𝑍 ) ) )
8 7 necon3bd ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ¬ 𝑋 ( 𝑌 𝑍 ) → 𝑋𝑌 ) )
9 1 2 3 latlej2 ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵 ) → 𝑍 ( 𝑌 𝑍 ) )
10 9 3adant3r1 ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍 ( 𝑌 𝑍 ) )
11 breq1 ( 𝑋 = 𝑍 → ( 𝑋 ( 𝑌 𝑍 ) ↔ 𝑍 ( 𝑌 𝑍 ) ) )
12 10 11 syl5ibrcom ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 = 𝑍𝑋 ( 𝑌 𝑍 ) ) )
13 12 necon3bd ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ¬ 𝑋 ( 𝑌 𝑍 ) → 𝑋𝑍 ) )
14 8 13 jcad ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ¬ 𝑋 ( 𝑌 𝑍 ) → ( 𝑋𝑌𝑋𝑍 ) ) )
15 14 3impia ( ( 𝐾 ∈ Lat ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ ¬ 𝑋 ( 𝑌 𝑍 ) ) → ( 𝑋𝑌𝑋𝑍 ) )