| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcdlkreq2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | lcdlkreq2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | lcdlkreq2.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | lcdlkreq2.r | ⊢ 𝑅  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | lcdlkreq2.o | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 6 |  | lcdlkreq2.l | ⊢ 𝐿  =  ( LKer ‘ 𝑈 ) | 
						
							| 7 |  | lcdlkreq2.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | lcdlkreq2.v | ⊢ 𝑉  =  ( Base ‘ 𝐶 ) | 
						
							| 9 |  | lcdlkreq2.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 10 |  | lcdlkreq2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | lcdlkreq2.a | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑅  ∖  {  0  } ) ) | 
						
							| 12 |  | lcdlkreq2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 13 |  | lcdlkreq2.g | ⊢ ( 𝜑  →  𝐺  =  ( 𝐴  ·  𝐼 ) ) | 
						
							| 14 |  | eqid | ⊢ ( LFnl ‘ 𝑈 )  =  ( LFnl ‘ 𝑈 ) | 
						
							| 15 |  | eqid | ⊢ ( LDual ‘ 𝑈 )  =  ( LDual ‘ 𝑈 ) | 
						
							| 16 |  | eqid | ⊢ (  ·𝑠  ‘ ( LDual ‘ 𝑈 ) )  =  (  ·𝑠  ‘ ( LDual ‘ 𝑈 ) ) | 
						
							| 17 | 1 2 10 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 18 | 1 7 8 2 14 10 12 | lcdvbaselfl | ⊢ ( 𝜑  →  𝐼  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 19 | 1 2 15 16 7 9 10 | lcdvs | ⊢ ( 𝜑  →   ·   =  (  ·𝑠  ‘ ( LDual ‘ 𝑈 ) ) ) | 
						
							| 20 | 19 | oveqd | ⊢ ( 𝜑  →  ( 𝐴  ·  𝐼 )  =  ( 𝐴 (  ·𝑠  ‘ ( LDual ‘ 𝑈 ) ) 𝐼 ) ) | 
						
							| 21 | 13 20 | eqtrd | ⊢ ( 𝜑  →  𝐺  =  ( 𝐴 (  ·𝑠  ‘ ( LDual ‘ 𝑈 ) ) 𝐼 ) ) | 
						
							| 22 | 3 4 5 14 6 15 16 17 11 18 21 | lkreqN | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  =  ( 𝐿 ‘ 𝐼 ) ) |