| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdlkreq2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
lcdlkreq2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
lcdlkreq2.s |
⊢ 𝑆 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
lcdlkreq2.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
| 5 |
|
lcdlkreq2.o |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 6 |
|
lcdlkreq2.l |
⊢ 𝐿 = ( LKer ‘ 𝑈 ) |
| 7 |
|
lcdlkreq2.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
lcdlkreq2.v |
⊢ 𝑉 = ( Base ‘ 𝐶 ) |
| 9 |
|
lcdlkreq2.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
| 10 |
|
lcdlkreq2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 11 |
|
lcdlkreq2.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑅 ∖ { 0 } ) ) |
| 12 |
|
lcdlkreq2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 13 |
|
lcdlkreq2.g |
⊢ ( 𝜑 → 𝐺 = ( 𝐴 · 𝐼 ) ) |
| 14 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
| 15 |
|
eqid |
⊢ ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 ) |
| 16 |
|
eqid |
⊢ ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) = ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) |
| 17 |
1 2 10
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 18 |
1 7 8 2 14 10 12
|
lcdvbaselfl |
⊢ ( 𝜑 → 𝐼 ∈ ( LFnl ‘ 𝑈 ) ) |
| 19 |
1 2 15 16 7 9 10
|
lcdvs |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) ) |
| 20 |
19
|
oveqd |
⊢ ( 𝜑 → ( 𝐴 · 𝐼 ) = ( 𝐴 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐼 ) ) |
| 21 |
13 20
|
eqtrd |
⊢ ( 𝜑 → 𝐺 = ( 𝐴 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐼 ) ) |
| 22 |
3 4 5 14 6 15 16 17 11 18 21
|
lkreqN |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝐼 ) ) |