Metamath Proof Explorer


Theorem lcdlkreq2N

Description: Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdlkreq2.h 𝐻 = ( LHyp ‘ 𝐾 )
lcdlkreq2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
lcdlkreq2.s 𝑆 = ( Scalar ‘ 𝑈 )
lcdlkreq2.r 𝑅 = ( Base ‘ 𝑆 )
lcdlkreq2.o 0 = ( 0g𝑆 )
lcdlkreq2.l 𝐿 = ( LKer ‘ 𝑈 )
lcdlkreq2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
lcdlkreq2.v 𝑉 = ( Base ‘ 𝐶 )
lcdlkreq2.t · = ( ·𝑠𝐶 )
lcdlkreq2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
lcdlkreq2.a ( 𝜑𝐴 ∈ ( 𝑅 ∖ { 0 } ) )
lcdlkreq2.i ( 𝜑𝐼𝑉 )
lcdlkreq2.g ( 𝜑𝐺 = ( 𝐴 · 𝐼 ) )
Assertion lcdlkreq2N ( 𝜑 → ( 𝐿𝐺 ) = ( 𝐿𝐼 ) )

Proof

Step Hyp Ref Expression
1 lcdlkreq2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 lcdlkreq2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 lcdlkreq2.s 𝑆 = ( Scalar ‘ 𝑈 )
4 lcdlkreq2.r 𝑅 = ( Base ‘ 𝑆 )
5 lcdlkreq2.o 0 = ( 0g𝑆 )
6 lcdlkreq2.l 𝐿 = ( LKer ‘ 𝑈 )
7 lcdlkreq2.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 lcdlkreq2.v 𝑉 = ( Base ‘ 𝐶 )
9 lcdlkreq2.t · = ( ·𝑠𝐶 )
10 lcdlkreq2.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 lcdlkreq2.a ( 𝜑𝐴 ∈ ( 𝑅 ∖ { 0 } ) )
12 lcdlkreq2.i ( 𝜑𝐼𝑉 )
13 lcdlkreq2.g ( 𝜑𝐺 = ( 𝐴 · 𝐼 ) )
14 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
15 eqid ( LDual ‘ 𝑈 ) = ( LDual ‘ 𝑈 )
16 eqid ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) = ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) )
17 1 2 10 dvhlvec ( 𝜑𝑈 ∈ LVec )
18 1 7 8 2 14 10 12 lcdvbaselfl ( 𝜑𝐼 ∈ ( LFnl ‘ 𝑈 ) )
19 1 2 15 16 7 9 10 lcdvs ( 𝜑· = ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) )
20 19 oveqd ( 𝜑 → ( 𝐴 · 𝐼 ) = ( 𝐴 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐼 ) )
21 13 20 eqtrd ( 𝜑𝐺 = ( 𝐴 ( ·𝑠 ‘ ( LDual ‘ 𝑈 ) ) 𝐼 ) )
22 3 4 5 14 6 15 16 17 11 18 21 lkreqN ( 𝜑 → ( 𝐿𝐺 ) = ( 𝐿𝐼 ) )