Metamath Proof Explorer


Theorem lcdlkreq2N

Description: Colinear functionals have equal kernels. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdlkreq2.h
|- H = ( LHyp ` K )
lcdlkreq2.u
|- U = ( ( DVecH ` K ) ` W )
lcdlkreq2.s
|- S = ( Scalar ` U )
lcdlkreq2.r
|- R = ( Base ` S )
lcdlkreq2.o
|- .0. = ( 0g ` S )
lcdlkreq2.l
|- L = ( LKer ` U )
lcdlkreq2.c
|- C = ( ( LCDual ` K ) ` W )
lcdlkreq2.v
|- V = ( Base ` C )
lcdlkreq2.t
|- .x. = ( .s ` C )
lcdlkreq2.k
|- ( ph -> ( K e. HL /\ W e. H ) )
lcdlkreq2.a
|- ( ph -> A e. ( R \ { .0. } ) )
lcdlkreq2.i
|- ( ph -> I e. V )
lcdlkreq2.g
|- ( ph -> G = ( A .x. I ) )
Assertion lcdlkreq2N
|- ( ph -> ( L ` G ) = ( L ` I ) )

Proof

Step Hyp Ref Expression
1 lcdlkreq2.h
 |-  H = ( LHyp ` K )
2 lcdlkreq2.u
 |-  U = ( ( DVecH ` K ) ` W )
3 lcdlkreq2.s
 |-  S = ( Scalar ` U )
4 lcdlkreq2.r
 |-  R = ( Base ` S )
5 lcdlkreq2.o
 |-  .0. = ( 0g ` S )
6 lcdlkreq2.l
 |-  L = ( LKer ` U )
7 lcdlkreq2.c
 |-  C = ( ( LCDual ` K ) ` W )
8 lcdlkreq2.v
 |-  V = ( Base ` C )
9 lcdlkreq2.t
 |-  .x. = ( .s ` C )
10 lcdlkreq2.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
11 lcdlkreq2.a
 |-  ( ph -> A e. ( R \ { .0. } ) )
12 lcdlkreq2.i
 |-  ( ph -> I e. V )
13 lcdlkreq2.g
 |-  ( ph -> G = ( A .x. I ) )
14 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
15 eqid
 |-  ( LDual ` U ) = ( LDual ` U )
16 eqid
 |-  ( .s ` ( LDual ` U ) ) = ( .s ` ( LDual ` U ) )
17 1 2 10 dvhlvec
 |-  ( ph -> U e. LVec )
18 1 7 8 2 14 10 12 lcdvbaselfl
 |-  ( ph -> I e. ( LFnl ` U ) )
19 1 2 15 16 7 9 10 lcdvs
 |-  ( ph -> .x. = ( .s ` ( LDual ` U ) ) )
20 19 oveqd
 |-  ( ph -> ( A .x. I ) = ( A ( .s ` ( LDual ` U ) ) I ) )
21 13 20 eqtrd
 |-  ( ph -> G = ( A ( .s ` ( LDual ` U ) ) I ) )
22 3 4 5 14 6 15 16 17 11 18 21 lkreqN
 |-  ( ph -> ( L ` G ) = ( L ` I ) )