| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lcdlkreq2.h |
|- H = ( LHyp ` K ) |
| 2 |
|
lcdlkreq2.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
lcdlkreq2.s |
|- S = ( Scalar ` U ) |
| 4 |
|
lcdlkreq2.r |
|- R = ( Base ` S ) |
| 5 |
|
lcdlkreq2.o |
|- .0. = ( 0g ` S ) |
| 6 |
|
lcdlkreq2.l |
|- L = ( LKer ` U ) |
| 7 |
|
lcdlkreq2.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
lcdlkreq2.v |
|- V = ( Base ` C ) |
| 9 |
|
lcdlkreq2.t |
|- .x. = ( .s ` C ) |
| 10 |
|
lcdlkreq2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 11 |
|
lcdlkreq2.a |
|- ( ph -> A e. ( R \ { .0. } ) ) |
| 12 |
|
lcdlkreq2.i |
|- ( ph -> I e. V ) |
| 13 |
|
lcdlkreq2.g |
|- ( ph -> G = ( A .x. I ) ) |
| 14 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
| 15 |
|
eqid |
|- ( LDual ` U ) = ( LDual ` U ) |
| 16 |
|
eqid |
|- ( .s ` ( LDual ` U ) ) = ( .s ` ( LDual ` U ) ) |
| 17 |
1 2 10
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 18 |
1 7 8 2 14 10 12
|
lcdvbaselfl |
|- ( ph -> I e. ( LFnl ` U ) ) |
| 19 |
1 2 15 16 7 9 10
|
lcdvs |
|- ( ph -> .x. = ( .s ` ( LDual ` U ) ) ) |
| 20 |
19
|
oveqd |
|- ( ph -> ( A .x. I ) = ( A ( .s ` ( LDual ` U ) ) I ) ) |
| 21 |
13 20
|
eqtrd |
|- ( ph -> G = ( A ( .s ` ( LDual ` U ) ) I ) ) |
| 22 |
3 4 5 14 6 15 16 17 11 18 21
|
lkreqN |
|- ( ph -> ( L ` G ) = ( L ` I ) ) |