| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  𝑏 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑎  =  𝑀  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  𝑀 ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑎  =  𝑁  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  𝑁 ) ) | 
						
							| 4 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 5 |  | frmy | ⊢  Yrm  : ( ( ℤ≥ ‘ 2 )  ×  ℤ ) ⟶ ℤ | 
						
							| 6 | 5 | fovcl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ )  →  ( 𝐴  Yrm  𝑎 )  ∈  ℤ ) | 
						
							| 7 | 6 | zred | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ )  →  ( 𝐴  Yrm  𝑎 )  ∈  ℝ ) | 
						
							| 8 |  | ltrmy | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑎  <  𝑏  ↔  ( 𝐴  Yrm  𝑎 )  <  ( 𝐴  Yrm  𝑏 ) ) ) | 
						
							| 9 | 8 | biimpd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑎  <  𝑏  →  ( 𝐴  Yrm  𝑎 )  <  ( 𝐴  Yrm  𝑏 ) ) ) | 
						
							| 10 | 9 | 3expb | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑎  <  𝑏  →  ( 𝐴  Yrm  𝑎 )  <  ( 𝐴  Yrm  𝑏 ) ) ) | 
						
							| 11 | 1 2 3 4 7 10 | leord1 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑀  ≤  𝑁  ↔  ( 𝐴  Yrm  𝑀 )  ≤  ( 𝐴  Yrm  𝑁 ) ) ) | 
						
							| 12 | 11 | 3impb | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ≤  𝑁  ↔  ( 𝐴  Yrm  𝑀 )  ≤  ( 𝐴  Yrm  𝑁 ) ) ) |