| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | frmy | ⊢  Yrm  : ( ( ℤ≥ ‘ 2 )  ×  ℤ ) ⟶ ℤ | 
						
							| 3 | 2 | fovcl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  Yrm  𝑁 )  ∈  ℤ ) | 
						
							| 4 | 1 3 | sylan2 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  Yrm  𝑁 )  ∈  ℤ ) | 
						
							| 5 |  | rmy0 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  Yrm  0 )  =  0 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  Yrm  0 )  =  0 ) | 
						
							| 7 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  0  <  𝑁 ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  𝐴  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 10 |  | 0zd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  0  ∈  ℤ ) | 
						
							| 11 | 1 | adantl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℤ ) | 
						
							| 12 |  | ltrmy | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0  <  𝑁  ↔  ( 𝐴  Yrm  0 )  <  ( 𝐴  Yrm  𝑁 ) ) ) | 
						
							| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  ( 0  <  𝑁  ↔  ( 𝐴  Yrm  0 )  <  ( 𝐴  Yrm  𝑁 ) ) ) | 
						
							| 14 | 8 13 | mpbid | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  Yrm  0 )  <  ( 𝐴  Yrm  𝑁 ) ) | 
						
							| 15 | 6 14 | eqbrtrrd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  0  <  ( 𝐴  Yrm  𝑁 ) ) | 
						
							| 16 |  | elnnz | ⊢ ( ( 𝐴  Yrm  𝑁 )  ∈  ℕ  ↔  ( ( 𝐴  Yrm  𝑁 )  ∈  ℤ  ∧  0  <  ( 𝐴  Yrm  𝑁 ) ) ) | 
						
							| 17 | 4 15 16 | sylanbrc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  Yrm  𝑁 )  ∈  ℕ ) |