Metamath Proof Explorer


Theorem rmynn0

Description: rmY is nonnegative for nonnegative arguments. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion rmynn0 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑁 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
2 frmy Yrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℤ
3 2 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Yrm 𝑁 ) ∈ ℤ )
4 1 3 sylan2 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑁 ) ∈ ℤ )
5 rmxypos ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) )
6 5 simprd ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝐴 Yrm 𝑁 ) )
7 elnn0z ( ( 𝐴 Yrm 𝑁 ) ∈ ℕ0 ↔ ( ( 𝐴 Yrm 𝑁 ) ∈ ℤ ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) )
8 4 6 7 sylanbrc ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑁 ) ∈ ℕ0 )