| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 0 ) ) |
| 2 |
1
|
breq2d |
⊢ ( 𝑎 = 0 → ( 0 < ( 𝐴 Xrm 𝑎 ) ↔ 0 < ( 𝐴 Xrm 0 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 0 ) ) |
| 4 |
3
|
breq2d |
⊢ ( 𝑎 = 0 → ( 0 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 0 ≤ ( 𝐴 Yrm 0 ) ) ) |
| 5 |
2 4
|
anbi12d |
⊢ ( 𝑎 = 0 → ( ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 0 < ( 𝐴 Xrm 0 ) ∧ 0 ≤ ( 𝐴 Yrm 0 ) ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑎 = 0 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 0 ) ∧ 0 ≤ ( 𝐴 Yrm 0 ) ) ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑏 ) ) |
| 8 |
7
|
breq2d |
⊢ ( 𝑎 = 𝑏 → ( 0 < ( 𝐴 Xrm 𝑎 ) ↔ 0 < ( 𝐴 Xrm 𝑏 ) ) ) |
| 9 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) ) |
| 10 |
9
|
breq2d |
⊢ ( 𝑎 = 𝑏 → ( 0 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) |
| 11 |
8 10
|
anbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm ( 𝑏 + 1 ) ) ) |
| 14 |
13
|
breq2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ↔ 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) |
| 16 |
15
|
breq2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 0 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
| 17 |
14 16
|
anbi12d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) |
| 18 |
17
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑁 ) ) |
| 20 |
19
|
breq2d |
⊢ ( 𝑎 = 𝑁 → ( 0 < ( 𝐴 Xrm 𝑎 ) ↔ 0 < ( 𝐴 Xrm 𝑁 ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) ) |
| 22 |
21
|
breq2d |
⊢ ( 𝑎 = 𝑁 → ( 0 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) |
| 23 |
20 22
|
anbi12d |
⊢ ( 𝑎 = 𝑁 → ( ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) ) |
| 24 |
23
|
imbi2d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ) ↔ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) ) ) |
| 25 |
|
0lt1 |
⊢ 0 < 1 |
| 26 |
|
rmx0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Xrm 0 ) = 1 ) |
| 27 |
25 26
|
breqtrrid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 < ( 𝐴 Xrm 0 ) ) |
| 28 |
|
0le0 |
⊢ 0 ≤ 0 |
| 29 |
|
rmy0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 0 ) = 0 ) |
| 30 |
28 29
|
breqtrrid |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ ( 𝐴 Yrm 0 ) ) |
| 31 |
27 30
|
jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 0 ) ∧ 0 ≤ ( 𝐴 Yrm 0 ) ) ) |
| 32 |
|
simp2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
| 33 |
|
nn0z |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 𝑏 ∈ ℤ ) |
| 35 |
|
frmx |
⊢ Xrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℕ0 |
| 36 |
35
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 ) |
| 37 |
32 34 36
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 ) |
| 38 |
37
|
nn0red |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Xrm 𝑏 ) ∈ ℝ ) |
| 39 |
|
eluzelre |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℝ ) |
| 40 |
39
|
3ad2ant2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 𝐴 ∈ ℝ ) |
| 41 |
38 40
|
remulcld |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ∈ ℝ ) |
| 42 |
|
rmspecpos |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ+ ) |
| 43 |
42
|
rpred |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ ) |
| 44 |
43
|
3ad2ant2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ ) |
| 45 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
| 46 |
45
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ ) |
| 47 |
32 34 46
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ ) |
| 48 |
47
|
zred |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Yrm 𝑏 ) ∈ ℝ ) |
| 49 |
44 48
|
remulcld |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ∈ ℝ ) |
| 50 |
|
simp3l |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < ( 𝐴 Xrm 𝑏 ) ) |
| 51 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
| 52 |
51
|
nngt0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 < 𝐴 ) |
| 53 |
52
|
3ad2ant2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < 𝐴 ) |
| 54 |
38 40 50 53
|
mulgt0d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ) |
| 55 |
42
|
rpge0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ ( ( 𝐴 ↑ 2 ) − 1 ) ) |
| 56 |
55
|
3ad2ant2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( ( 𝐴 ↑ 2 ) − 1 ) ) |
| 57 |
|
simp3r |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( 𝐴 Yrm 𝑏 ) ) |
| 58 |
44 48 56 57
|
mulge0d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) |
| 59 |
41 49 54 58
|
addgtge0d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) ) |
| 60 |
|
rmxp1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Xrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) ) |
| 61 |
32 34 60
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Xrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) ) |
| 62 |
59 61
|
breqtrrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ) |
| 63 |
48 40
|
remulcld |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) ∈ ℝ ) |
| 64 |
|
eluzge2nn0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ0 ) |
| 65 |
64
|
nn0ge0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 ≤ 𝐴 ) |
| 66 |
65
|
3ad2ant2 |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ 𝐴 ) |
| 67 |
48 40 57 66
|
mulge0d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) ) |
| 68 |
37
|
nn0ge0d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( 𝐴 Xrm 𝑏 ) ) |
| 69 |
63 38 67 68
|
addge0d |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ) |
| 70 |
|
rmyp1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ) |
| 71 |
32 34 70
|
syl2anc |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ) |
| 72 |
69 71
|
breqtrrd |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) |
| 73 |
62 72
|
jca |
⊢ ( ( 𝑏 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) |
| 74 |
73
|
3exp |
⊢ ( 𝑏 ∈ ℕ0 → ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) ) |
| 75 |
74
|
a2d |
⊢ ( 𝑏 ∈ ℕ0 → ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) ) |
| 76 |
6 12 18 24 31 75
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) ) |
| 77 |
76
|
impcom |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) |