Metamath Proof Explorer


Theorem rmxypos

Description: For all nonnegative indices, X is positive and Y is nonnegative. (Contributed by Stefan O'Rear, 24-Sep-2014)

Ref Expression
Assertion rmxypos ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑎 = 0 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 0 ) )
2 1 breq2d ( 𝑎 = 0 → ( 0 < ( 𝐴 Xrm 𝑎 ) ↔ 0 < ( 𝐴 Xrm 0 ) ) )
3 oveq2 ( 𝑎 = 0 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 0 ) )
4 3 breq2d ( 𝑎 = 0 → ( 0 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 0 ≤ ( 𝐴 Yrm 0 ) ) )
5 2 4 anbi12d ( 𝑎 = 0 → ( ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 0 < ( 𝐴 Xrm 0 ) ∧ 0 ≤ ( 𝐴 Yrm 0 ) ) ) )
6 5 imbi2d ( 𝑎 = 0 → ( ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ) ↔ ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 0 ) ∧ 0 ≤ ( 𝐴 Yrm 0 ) ) ) ) )
7 oveq2 ( 𝑎 = 𝑏 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑏 ) )
8 7 breq2d ( 𝑎 = 𝑏 → ( 0 < ( 𝐴 Xrm 𝑎 ) ↔ 0 < ( 𝐴 Xrm 𝑏 ) ) )
9 oveq2 ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) )
10 9 breq2d ( 𝑎 = 𝑏 → ( 0 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) )
11 8 10 anbi12d ( 𝑎 = 𝑏 → ( ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) )
12 11 imbi2d ( 𝑎 = 𝑏 → ( ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ) ↔ ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) ) )
13 oveq2 ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm ( 𝑏 + 1 ) ) )
14 13 breq2d ( 𝑎 = ( 𝑏 + 1 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ↔ 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ) )
15 oveq2 ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm ( 𝑏 + 1 ) ) )
16 15 breq2d ( 𝑎 = ( 𝑏 + 1 ) → ( 0 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) )
17 14 16 anbi12d ( 𝑎 = ( 𝑏 + 1 ) → ( ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) )
18 17 imbi2d ( 𝑎 = ( 𝑏 + 1 ) → ( ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ) ↔ ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) )
19 oveq2 ( 𝑎 = 𝑁 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑁 ) )
20 19 breq2d ( 𝑎 = 𝑁 → ( 0 < ( 𝐴 Xrm 𝑎 ) ↔ 0 < ( 𝐴 Xrm 𝑁 ) ) )
21 oveq2 ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) )
22 21 breq2d ( 𝑎 = 𝑁 → ( 0 ≤ ( 𝐴 Yrm 𝑎 ) ↔ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) )
23 20 22 anbi12d ( 𝑎 = 𝑁 → ( ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ↔ ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) )
24 23 imbi2d ( 𝑎 = 𝑁 → ( ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑎 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑎 ) ) ) ↔ ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) ) )
25 0lt1 0 < 1
26 rmx0 ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 Xrm 0 ) = 1 )
27 25 26 breqtrrid ( 𝐴 ∈ ( ℤ ‘ 2 ) → 0 < ( 𝐴 Xrm 0 ) )
28 0le0 0 ≤ 0
29 rmy0 ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 𝐴 Yrm 0 ) = 0 )
30 28 29 breqtrrid ( 𝐴 ∈ ( ℤ ‘ 2 ) → 0 ≤ ( 𝐴 Yrm 0 ) )
31 27 30 jca ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 0 ) ∧ 0 ≤ ( 𝐴 Yrm 0 ) ) )
32 simp2 ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 𝐴 ∈ ( ℤ ‘ 2 ) )
33 nn0z ( 𝑏 ∈ ℕ0𝑏 ∈ ℤ )
34 33 3ad2ant1 ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 𝑏 ∈ ℤ )
35 frmx Xrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℕ0
36 35 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 )
37 32 34 36 syl2anc ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 )
38 37 nn0red ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Xrm 𝑏 ) ∈ ℝ )
39 eluzelre ( 𝐴 ∈ ( ℤ ‘ 2 ) → 𝐴 ∈ ℝ )
40 39 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 𝐴 ∈ ℝ )
41 38 40 remulcld ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) ∈ ℝ )
42 rmspecpos ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ+ )
43 42 rpred ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ )
44 43 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( ( 𝐴 ↑ 2 ) − 1 ) ∈ ℝ )
45 frmy Yrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℤ
46 45 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ )
47 32 34 46 syl2anc ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ )
48 47 zred ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Yrm 𝑏 ) ∈ ℝ )
49 44 48 remulcld ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ∈ ℝ )
50 simp3l ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < ( 𝐴 Xrm 𝑏 ) )
51 eluz2nn ( 𝐴 ∈ ( ℤ ‘ 2 ) → 𝐴 ∈ ℕ )
52 51 nngt0d ( 𝐴 ∈ ( ℤ ‘ 2 ) → 0 < 𝐴 )
53 52 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < 𝐴 )
54 38 40 50 53 mulgt0d ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) )
55 42 rpge0d ( 𝐴 ∈ ( ℤ ‘ 2 ) → 0 ≤ ( ( 𝐴 ↑ 2 ) − 1 ) )
56 55 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( ( 𝐴 ↑ 2 ) − 1 ) )
57 simp3r ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( 𝐴 Yrm 𝑏 ) )
58 44 48 56 57 mulge0d ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) )
59 41 49 54 58 addgtge0d ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) )
60 rmxp1 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Xrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) )
61 32 34 60 syl2anc ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Xrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Xrm 𝑏 ) · 𝐴 ) + ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐴 Yrm 𝑏 ) ) ) )
62 59 61 breqtrrd ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) )
63 48 40 remulcld ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) ∈ ℝ )
64 eluzge2nn0 ( 𝐴 ∈ ( ℤ ‘ 2 ) → 𝐴 ∈ ℕ0 )
65 64 nn0ge0d ( 𝐴 ∈ ( ℤ ‘ 2 ) → 0 ≤ 𝐴 )
66 65 3ad2ant2 ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ 𝐴 )
67 48 40 57 66 mulge0d ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) )
68 37 nn0ge0d ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( 𝐴 Xrm 𝑏 ) )
69 63 38 67 68 addge0d ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) )
70 rmyp1 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) )
71 32 34 70 syl2anc ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) )
72 69 71 breqtrrd ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) )
73 62 72 jca ( ( 𝑏 ∈ ℕ0𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) )
74 73 3exp ( 𝑏 ∈ ℕ0 → ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) → ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) )
75 74 a2d ( 𝑏 ∈ ℕ0 → ( ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) → ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm ( 𝑏 + 1 ) ) ∧ 0 ≤ ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) ) ) )
76 6 12 18 24 31 75 nn0ind ( 𝑁 ∈ ℕ0 → ( 𝐴 ∈ ( ℤ ‘ 2 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) )
77 76 impcom ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) )