Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝑏 ∈ ℕ0 → 𝑏 ∈ ℤ ) |
2 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
3 |
2
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ ) |
4 |
1 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ ) |
5 |
4
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) ∈ ℝ ) |
6 |
|
eluzelre |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
8 |
5 7
|
remulcld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) ∈ ℝ ) |
9 |
|
frmx |
⊢ Xrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℕ0 |
10 |
9
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 ) |
11 |
1 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 ) |
12 |
11
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑏 ) ∈ ℝ ) |
13 |
8 12
|
readdcld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ∈ ℝ ) |
14 |
|
rmxypos |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) ) |
15 |
14
|
simprd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 0 ≤ ( 𝐴 Yrm 𝑏 ) ) |
16 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
17 |
16
|
nnge1d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ≤ 𝐴 ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 1 ≤ 𝐴 ) |
19 |
5 7 15 18
|
lemulge11d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) ≤ ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) ) |
20 |
14
|
simpld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 0 < ( 𝐴 Xrm 𝑏 ) ) |
21 |
12 8
|
ltaddposd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ↔ ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) < ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ) ) |
22 |
20 21
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) < ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ) |
23 |
5 8 13 19 22
|
lelttrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) < ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ) |
24 |
|
rmyp1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ) |
25 |
1 24
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ) |
26 |
23 25
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) < ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) |
27 |
|
nn0z |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℤ ) |
28 |
2
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℤ ) |
29 |
27 28
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑎 ) ∈ ℤ ) |
30 |
29
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑎 ) ∈ ℝ ) |
31 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
32 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm ( 𝑏 + 1 ) ) ) |
33 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) ) |
34 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑀 ) ) |
35 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) ) |
36 |
26 30 31 32 33 34 35
|
monotuz |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) < ( 𝐴 Yrm 𝑁 ) ) ) |
37 |
36
|
3impb |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) < ( 𝐴 Yrm 𝑁 ) ) ) |