Metamath Proof Explorer


Theorem ltrmynn0

Description: The Y-sequence is strictly monotonic on NN0 . Strengthened by ltrmy . (Contributed by Stefan O'Rear, 24-Sep-2014)

Ref Expression
Assertion ltrmynn0 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) < ( 𝐴 Yrm 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 nn0z ( 𝑏 ∈ ℕ0𝑏 ∈ ℤ )
2 frmy Yrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℤ
3 2 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ )
4 1 3 sylan2 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) ∈ ℤ )
5 4 zred ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) ∈ ℝ )
6 eluzelre ( 𝐴 ∈ ( ℤ ‘ 2 ) → 𝐴 ∈ ℝ )
7 6 adantr ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 𝐴 ∈ ℝ )
8 5 7 remulcld ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) ∈ ℝ )
9 frmx Xrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℕ0
10 9 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 )
11 1 10 sylan2 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑏 ) ∈ ℕ0 )
12 11 nn0red ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑏 ) ∈ ℝ )
13 8 12 readdcld ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ∈ ℝ )
14 rmxypos ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑏 ) ) )
15 14 simprd ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 0 ≤ ( 𝐴 Yrm 𝑏 ) )
16 eluz2nn ( 𝐴 ∈ ( ℤ ‘ 2 ) → 𝐴 ∈ ℕ )
17 16 nnge1d ( 𝐴 ∈ ( ℤ ‘ 2 ) → 1 ≤ 𝐴 )
18 17 adantr ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 1 ≤ 𝐴 )
19 5 7 15 18 lemulge11d ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) ≤ ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) )
20 14 simpld ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → 0 < ( 𝐴 Xrm 𝑏 ) )
21 12 8 ltaddposd ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑏 ) ↔ ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) < ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) ) )
22 20 21 mpbid ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) < ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) )
23 5 8 13 19 22 lelttrd ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) < ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) )
24 rmyp1 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) )
25 1 24 sylan2 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm ( 𝑏 + 1 ) ) = ( ( ( 𝐴 Yrm 𝑏 ) · 𝐴 ) + ( 𝐴 Xrm 𝑏 ) ) )
26 23 25 breqtrrd ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑏 ) < ( 𝐴 Yrm ( 𝑏 + 1 ) ) )
27 nn0z ( 𝑎 ∈ ℕ0𝑎 ∈ ℤ )
28 2 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℤ )
29 27 28 sylan2 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑎 ) ∈ ℤ )
30 29 zred ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Yrm 𝑎 ) ∈ ℝ )
31 nn0uz 0 = ( ℤ ‘ 0 )
32 oveq2 ( 𝑎 = ( 𝑏 + 1 ) → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm ( 𝑏 + 1 ) ) )
33 oveq2 ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) )
34 oveq2 ( 𝑎 = 𝑀 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑀 ) )
35 oveq2 ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) )
36 26 30 31 32 33 34 35 monotuz ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) < ( 𝐴 Yrm 𝑁 ) ) )
37 36 3impb ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) < ( 𝐴 Yrm 𝑁 ) ) )