Metamath Proof Explorer


Theorem ltrmynn0

Description: The Y-sequence is strictly monotonic on NN0 . Strengthened by ltrmy . (Contributed by Stefan O'Rear, 24-Sep-2014)

Ref Expression
Assertion ltrmynn0
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( A rmY M ) < ( A rmY N ) ) )

Proof

Step Hyp Ref Expression
1 nn0z
 |-  ( b e. NN0 -> b e. ZZ )
2 frmy
 |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ
3 2 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ )
4 1 3 sylan2
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) e. ZZ )
5 4 zred
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) e. RR )
6 eluzelre
 |-  ( A e. ( ZZ>= ` 2 ) -> A e. RR )
7 6 adantr
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> A e. RR )
8 5 7 remulcld
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmY b ) x. A ) e. RR )
9 frmx
 |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0
10 9 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmX b ) e. NN0 )
11 1 10 sylan2
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) e. NN0 )
12 11 nn0red
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) e. RR )
13 8 12 readdcld
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) e. RR )
14 rmxypos
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) )
15 14 simprd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 <_ ( A rmY b ) )
16 eluz2nn
 |-  ( A e. ( ZZ>= ` 2 ) -> A e. NN )
17 16 nnge1d
 |-  ( A e. ( ZZ>= ` 2 ) -> 1 <_ A )
18 17 adantr
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 1 <_ A )
19 5 7 15 18 lemulge11d
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) <_ ( ( A rmY b ) x. A ) )
20 14 simpld
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 < ( A rmX b ) )
21 12 8 ltaddposd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 0 < ( A rmX b ) <-> ( ( A rmY b ) x. A ) < ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) ) )
22 20 21 mpbid
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmY b ) x. A ) < ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) )
23 5 8 13 19 22 lelttrd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) < ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) )
24 rmyp1
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY ( b + 1 ) ) = ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) )
25 1 24 sylan2
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY ( b + 1 ) ) = ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) )
26 23 25 breqtrrd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) < ( A rmY ( b + 1 ) ) )
27 nn0z
 |-  ( a e. NN0 -> a e. ZZ )
28 2 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. ZZ )
29 27 28 sylan2
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmY a ) e. ZZ )
30 29 zred
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmY a ) e. RR )
31 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
32 oveq2
 |-  ( a = ( b + 1 ) -> ( A rmY a ) = ( A rmY ( b + 1 ) ) )
33 oveq2
 |-  ( a = b -> ( A rmY a ) = ( A rmY b ) )
34 oveq2
 |-  ( a = M -> ( A rmY a ) = ( A rmY M ) )
35 oveq2
 |-  ( a = N -> ( A rmY a ) = ( A rmY N ) )
36 26 30 31 32 33 34 35 monotuz
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M < N <-> ( A rmY M ) < ( A rmY N ) ) )
37 36 3impb
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( A rmY M ) < ( A rmY N ) ) )