| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0z |
|- ( b e. NN0 -> b e. ZZ ) |
| 2 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
| 3 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ ) |
| 4 |
1 3
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) e. ZZ ) |
| 5 |
4
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) e. RR ) |
| 6 |
|
eluzelre |
|- ( A e. ( ZZ>= ` 2 ) -> A e. RR ) |
| 7 |
6
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> A e. RR ) |
| 8 |
5 7
|
remulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmY b ) x. A ) e. RR ) |
| 9 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
| 10 |
9
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmX b ) e. NN0 ) |
| 11 |
1 10
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) e. NN0 ) |
| 12 |
11
|
nn0red |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) e. RR ) |
| 13 |
8 12
|
readdcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) e. RR ) |
| 14 |
|
rmxypos |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) |
| 15 |
14
|
simprd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 <_ ( A rmY b ) ) |
| 16 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
| 17 |
16
|
nnge1d |
|- ( A e. ( ZZ>= ` 2 ) -> 1 <_ A ) |
| 18 |
17
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 1 <_ A ) |
| 19 |
5 7 15 18
|
lemulge11d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) <_ ( ( A rmY b ) x. A ) ) |
| 20 |
14
|
simpld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 < ( A rmX b ) ) |
| 21 |
12 8
|
ltaddposd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 0 < ( A rmX b ) <-> ( ( A rmY b ) x. A ) < ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) ) ) |
| 22 |
20 21
|
mpbid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmY b ) x. A ) < ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) ) |
| 23 |
5 8 13 19 22
|
lelttrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) < ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) ) |
| 24 |
|
rmyp1 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY ( b + 1 ) ) = ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) ) |
| 25 |
1 24
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY ( b + 1 ) ) = ( ( ( A rmY b ) x. A ) + ( A rmX b ) ) ) |
| 26 |
23 25
|
breqtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) < ( A rmY ( b + 1 ) ) ) |
| 27 |
|
nn0z |
|- ( a e. NN0 -> a e. ZZ ) |
| 28 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. ZZ ) |
| 29 |
27 28
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmY a ) e. ZZ ) |
| 30 |
29
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmY a ) e. RR ) |
| 31 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 32 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( A rmY a ) = ( A rmY ( b + 1 ) ) ) |
| 33 |
|
oveq2 |
|- ( a = b -> ( A rmY a ) = ( A rmY b ) ) |
| 34 |
|
oveq2 |
|- ( a = M -> ( A rmY a ) = ( A rmY M ) ) |
| 35 |
|
oveq2 |
|- ( a = N -> ( A rmY a ) = ( A rmY N ) ) |
| 36 |
26 30 31 32 33 34 35
|
monotuz |
|- ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M < N <-> ( A rmY M ) < ( A rmY N ) ) ) |
| 37 |
36
|
3impb |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( A rmY M ) < ( A rmY N ) ) ) |