| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z |  |-  ( b e. NN0 -> b e. ZZ ) | 
						
							| 2 |  | frmx |  |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 | 
						
							| 3 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmX b ) e. NN0 ) | 
						
							| 4 | 1 3 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) e. NN0 ) | 
						
							| 5 | 4 | nn0red |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) e. RR ) | 
						
							| 6 |  | eluzelre |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. RR ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> A e. RR ) | 
						
							| 8 | 5 7 | remulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmX b ) x. A ) e. RR ) | 
						
							| 9 | 1 | peano2zd |  |-  ( b e. NN0 -> ( b + 1 ) e. ZZ ) | 
						
							| 10 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( b + 1 ) e. ZZ ) -> ( A rmX ( b + 1 ) ) e. NN0 ) | 
						
							| 11 | 9 10 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX ( b + 1 ) ) e. NN0 ) | 
						
							| 12 | 11 | nn0red |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX ( b + 1 ) ) e. RR ) | 
						
							| 13 |  | eluz2b2 |  |-  ( A e. ( ZZ>= ` 2 ) <-> ( A e. NN /\ 1 < A ) ) | 
						
							| 14 | 13 | simprbi |  |-  ( A e. ( ZZ>= ` 2 ) -> 1 < A ) | 
						
							| 15 | 14 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 1 < A ) | 
						
							| 16 |  | rmxypos |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 0 < ( A rmX b ) /\ 0 <_ ( A rmY b ) ) ) | 
						
							| 17 | 16 | simpld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 < ( A rmX b ) ) | 
						
							| 18 |  | ltmulgt11 |  |-  ( ( ( A rmX b ) e. RR /\ A e. RR /\ 0 < ( A rmX b ) ) -> ( 1 < A <-> ( A rmX b ) < ( ( A rmX b ) x. A ) ) ) | 
						
							| 19 | 5 7 17 18 | syl3anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 1 < A <-> ( A rmX b ) < ( ( A rmX b ) x. A ) ) ) | 
						
							| 20 | 15 19 | mpbid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) < ( ( A rmX b ) x. A ) ) | 
						
							| 21 |  | rmspecnonsq |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. ( NN \ []NN ) ) | 
						
							| 22 | 21 | eldifad |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) | 
						
							| 23 | 22 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A ^ 2 ) - 1 ) e. NN ) | 
						
							| 24 | 23 | nnred |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A ^ 2 ) - 1 ) e. RR ) | 
						
							| 25 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 26 | 25 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY b ) e. ZZ ) | 
						
							| 27 | 1 26 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) e. ZZ ) | 
						
							| 28 | 27 | zred |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmY b ) e. RR ) | 
						
							| 29 | 23 | nnnn0d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A ^ 2 ) - 1 ) e. NN0 ) | 
						
							| 30 | 29 | nn0ge0d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 <_ ( ( A ^ 2 ) - 1 ) ) | 
						
							| 31 | 16 | simprd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 <_ ( A rmY b ) ) | 
						
							| 32 | 24 28 30 31 | mulge0d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> 0 <_ ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) | 
						
							| 33 | 24 28 | remulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) e. RR ) | 
						
							| 34 | 8 33 | addge01d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( 0 <_ ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) <-> ( ( A rmX b ) x. A ) <_ ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) ) | 
						
							| 35 | 32 34 | mpbid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmX b ) x. A ) <_ ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) | 
						
							| 36 |  | rmxp1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmX ( b + 1 ) ) = ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) | 
						
							| 37 | 1 36 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX ( b + 1 ) ) = ( ( ( A rmX b ) x. A ) + ( ( ( A ^ 2 ) - 1 ) x. ( A rmY b ) ) ) ) | 
						
							| 38 | 35 37 | breqtrrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( ( A rmX b ) x. A ) <_ ( A rmX ( b + 1 ) ) ) | 
						
							| 39 | 5 8 12 20 38 | ltletrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. NN0 ) -> ( A rmX b ) < ( A rmX ( b + 1 ) ) ) | 
						
							| 40 |  | nn0z |  |-  ( a e. NN0 -> a e. ZZ ) | 
						
							| 41 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmX a ) e. NN0 ) | 
						
							| 42 | 40 41 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmX a ) e. NN0 ) | 
						
							| 43 | 42 | nn0red |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmX a ) e. RR ) | 
						
							| 44 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 45 |  | oveq2 |  |-  ( a = ( b + 1 ) -> ( A rmX a ) = ( A rmX ( b + 1 ) ) ) | 
						
							| 46 |  | oveq2 |  |-  ( a = b -> ( A rmX a ) = ( A rmX b ) ) | 
						
							| 47 |  | oveq2 |  |-  ( a = M -> ( A rmX a ) = ( A rmX M ) ) | 
						
							| 48 |  | oveq2 |  |-  ( a = N -> ( A rmX a ) = ( A rmX N ) ) | 
						
							| 49 | 39 43 44 45 46 47 48 | monotuz |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M < N <-> ( A rmX M ) < ( A rmX N ) ) ) | 
						
							| 50 | 49 | 3impb |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( A rmX M ) < ( A rmX N ) ) ) |