| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( a = b -> ( A rmX a ) = ( A rmX b ) ) | 
						
							| 2 |  | oveq2 |  |-  ( a = M -> ( A rmX a ) = ( A rmX M ) ) | 
						
							| 3 |  | oveq2 |  |-  ( a = N -> ( A rmX a ) = ( A rmX N ) ) | 
						
							| 4 |  | nn0ssre |  |-  NN0 C_ RR | 
						
							| 5 |  | nn0z |  |-  ( a e. NN0 -> a e. ZZ ) | 
						
							| 6 |  | frmx |  |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 | 
						
							| 7 | 6 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmX a ) e. NN0 ) | 
						
							| 8 | 5 7 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmX a ) e. NN0 ) | 
						
							| 9 | 8 | nn0red |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( A rmX a ) e. RR ) | 
						
							| 10 |  | ltrmxnn0 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 /\ b e. NN0 ) -> ( a < b <-> ( A rmX a ) < ( A rmX b ) ) ) | 
						
							| 11 | 10 | biimpd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 /\ b e. NN0 ) -> ( a < b -> ( A rmX a ) < ( A rmX b ) ) ) | 
						
							| 12 | 11 | 3expb |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( a < b -> ( A rmX a ) < ( A rmX b ) ) ) | 
						
							| 13 | 1 2 3 4 9 12 | leord1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M <_ N <-> ( A rmX M ) <_ ( A rmX N ) ) ) | 
						
							| 14 | 13 | 3impb |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( A rmX M ) <_ ( A rmX N ) ) ) |