Metamath Proof Explorer


Theorem lermxnn0

Description: The X-sequence is monotonic on NN0 . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion lermxnn0 A2M0N0MNAXrmMAXrmN

Proof

Step Hyp Ref Expression
1 oveq2 a=bAXrma=AXrmb
2 oveq2 a=MAXrma=AXrmM
3 oveq2 a=NAXrma=AXrmN
4 nn0ssre 0
5 nn0z a0a
6 frmx Xrm:2×0
7 6 fovcl A2aAXrma0
8 5 7 sylan2 A2a0AXrma0
9 8 nn0red A2a0AXrma
10 ltrmxnn0 A2a0b0a<bAXrma<AXrmb
11 10 biimpd A2a0b0a<bAXrma<AXrmb
12 11 3expb A2a0b0a<bAXrma<AXrmb
13 1 2 3 4 9 12 leord1 A2M0N0MNAXrmMAXrmN
14 13 3impb A2M0N0MNAXrmMAXrmN