| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐴  Xrm  𝑎 )  =  ( 𝐴  Xrm  𝑏 ) ) | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑎  =  𝑀  →  ( 𝐴  Xrm  𝑎 )  =  ( 𝐴  Xrm  𝑀 ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑎  =  𝑁  →  ( 𝐴  Xrm  𝑎 )  =  ( 𝐴  Xrm  𝑁 ) ) | 
						
							| 4 |  | nn0ssre | ⊢ ℕ0  ⊆  ℝ | 
						
							| 5 |  | nn0z | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℤ ) | 
						
							| 6 |  | frmx | ⊢  Xrm  : ( ( ℤ≥ ‘ 2 )  ×  ℤ ) ⟶ ℕ0 | 
						
							| 7 | 6 | fovcl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ )  →  ( 𝐴  Xrm  𝑎 )  ∈  ℕ0 ) | 
						
							| 8 | 5 7 | sylan2 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐴  Xrm  𝑎 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0red | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐴  Xrm  𝑎 )  ∈  ℝ ) | 
						
							| 10 |  | ltrmxnn0 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑎  <  𝑏  ↔  ( 𝐴  Xrm  𝑎 )  <  ( 𝐴  Xrm  𝑏 ) ) ) | 
						
							| 11 | 10 | biimpd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑎  <  𝑏  →  ( 𝐴  Xrm  𝑎 )  <  ( 𝐴  Xrm  𝑏 ) ) ) | 
						
							| 12 | 11 | 3expb | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 ) )  →  ( 𝑎  <  𝑏  →  ( 𝐴  Xrm  𝑎 )  <  ( 𝐴  Xrm  𝑏 ) ) ) | 
						
							| 13 | 1 2 3 4 9 12 | leord1 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑀  ≤  𝑁  ↔  ( 𝐴  Xrm  𝑀 )  ≤  ( 𝐴  Xrm  𝑁 ) ) ) | 
						
							| 14 | 13 | 3impb | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ℕ0  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑀  ≤  𝑁  ↔  ( 𝐴  Xrm  𝑀 )  ≤  ( 𝐴  Xrm  𝑁 ) ) ) |