Metamath Proof Explorer


Theorem lermxnn0

Description: The X-sequence is monotonic on NN0 . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion lermxnn0 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝑀𝑁 ↔ ( 𝐴 Xrm 𝑀 ) ≤ ( 𝐴 Xrm 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑎 = 𝑏 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑏 ) )
2 oveq2 ( 𝑎 = 𝑀 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑀 ) )
3 oveq2 ( 𝑎 = 𝑁 → ( 𝐴 Xrm 𝑎 ) = ( 𝐴 Xrm 𝑁 ) )
4 nn0ssre 0 ⊆ ℝ
5 nn0z ( 𝑎 ∈ ℕ0𝑎 ∈ ℤ )
6 frmx Xrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℕ0
7 6 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Xrm 𝑎 ) ∈ ℕ0 )
8 5 7 sylan2 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑎 ) ∈ ℕ0 )
9 8 nn0red ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑎 ) ∈ ℝ )
10 ltrmxnn0 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 ↔ ( 𝐴 Xrm 𝑎 ) < ( 𝐴 Xrm 𝑏 ) ) )
11 10 biimpd ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( 𝐴 Xrm 𝑎 ) < ( 𝐴 Xrm 𝑏 ) ) )
12 11 3expb ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) ) → ( 𝑎 < 𝑏 → ( 𝐴 Xrm 𝑎 ) < ( 𝐴 Xrm 𝑏 ) ) )
13 1 2 3 4 9 12 leord1 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) ) → ( 𝑀𝑁 ↔ ( 𝐴 Xrm 𝑀 ) ≤ ( 𝐴 Xrm 𝑁 ) ) )
14 13 3impb ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝑀𝑁 ↔ ( 𝐴 Xrm 𝑀 ) ≤ ( 𝐴 Xrm 𝑁 ) ) )