| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 2 |
|
frmx |
⊢ Xrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℕ0 |
| 3 |
2
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Xrm 𝑁 ) ∈ ℕ0 ) |
| 4 |
1 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑁 ) ∈ ℕ0 ) |
| 5 |
|
rmxypos |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm 𝑁 ) ) ) |
| 6 |
5
|
simpld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → 0 < ( 𝐴 Xrm 𝑁 ) ) |
| 7 |
|
elnnnn0b |
⊢ ( ( 𝐴 Xrm 𝑁 ) ∈ ℕ ↔ ( ( 𝐴 Xrm 𝑁 ) ∈ ℕ0 ∧ 0 < ( 𝐴 Xrm 𝑁 ) ) ) |
| 8 |
4 6 7
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑁 ) ∈ ℕ ) |
| 9 |
8
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑁 ) ∈ ℕ ) |
| 10 |
|
rmxneg |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Xrm - 𝑁 ) = ( 𝐴 Xrm 𝑁 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 Xrm - 𝑁 ) = ( 𝐴 Xrm 𝑁 ) ) |
| 12 |
|
nn0z |
⊢ ( - 𝑁 ∈ ℕ0 → - 𝑁 ∈ ℤ ) |
| 13 |
2
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ - 𝑁 ∈ ℤ ) → ( 𝐴 Xrm - 𝑁 ) ∈ ℕ0 ) |
| 14 |
12 13
|
sylan2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 Xrm - 𝑁 ) ∈ ℕ0 ) |
| 15 |
|
rmxypos |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ - 𝑁 ∈ ℕ0 ) → ( 0 < ( 𝐴 Xrm - 𝑁 ) ∧ 0 ≤ ( 𝐴 Yrm - 𝑁 ) ) ) |
| 16 |
15
|
simpld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ - 𝑁 ∈ ℕ0 ) → 0 < ( 𝐴 Xrm - 𝑁 ) ) |
| 17 |
|
elnnnn0b |
⊢ ( ( 𝐴 Xrm - 𝑁 ) ∈ ℕ ↔ ( ( 𝐴 Xrm - 𝑁 ) ∈ ℕ0 ∧ 0 < ( 𝐴 Xrm - 𝑁 ) ) ) |
| 18 |
14 16 17
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 Xrm - 𝑁 ) ∈ ℕ ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 Xrm - 𝑁 ) ∈ ℕ ) |
| 20 |
11 19
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐴 Xrm 𝑁 ) ∈ ℕ ) |
| 21 |
|
elznn0 |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
| 22 |
21
|
simprbi |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) |
| 24 |
9 20 23
|
mpjaodan |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Xrm 𝑁 ) ∈ ℕ ) |