| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | frmx | ⊢  Xrm  : ( ( ℤ≥ ‘ 2 )  ×  ℤ ) ⟶ ℕ0 | 
						
							| 3 | 2 | fovcl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  Xrm  𝑁 )  ∈  ℕ0 ) | 
						
							| 4 | 1 3 | sylan2 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  Xrm  𝑁 )  ∈  ℕ0 ) | 
						
							| 5 |  | rmxypos | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 0  <  ( 𝐴  Xrm  𝑁 )  ∧  0  ≤  ( 𝐴  Yrm  𝑁 ) ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  0  <  ( 𝐴  Xrm  𝑁 ) ) | 
						
							| 7 |  | elnnnn0b | ⊢ ( ( 𝐴  Xrm  𝑁 )  ∈  ℕ  ↔  ( ( 𝐴  Xrm  𝑁 )  ∈  ℕ0  ∧  0  <  ( 𝐴  Xrm  𝑁 ) ) ) | 
						
							| 8 | 4 6 7 | sylanbrc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  Xrm  𝑁 )  ∈  ℕ ) | 
						
							| 9 | 8 | adantlr | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  Xrm  𝑁 )  ∈  ℕ ) | 
						
							| 10 |  | rmxneg | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  Xrm  - 𝑁 )  =  ( 𝐴  Xrm  𝑁 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( 𝐴  Xrm  - 𝑁 )  =  ( 𝐴  Xrm  𝑁 ) ) | 
						
							| 12 |  | nn0z | ⊢ ( - 𝑁  ∈  ℕ0  →  - 𝑁  ∈  ℤ ) | 
						
							| 13 | 2 | fovcl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  - 𝑁  ∈  ℤ )  →  ( 𝐴  Xrm  - 𝑁 )  ∈  ℕ0 ) | 
						
							| 14 | 12 13 | sylan2 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  - 𝑁  ∈  ℕ0 )  →  ( 𝐴  Xrm  - 𝑁 )  ∈  ℕ0 ) | 
						
							| 15 |  | rmxypos | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  - 𝑁  ∈  ℕ0 )  →  ( 0  <  ( 𝐴  Xrm  - 𝑁 )  ∧  0  ≤  ( 𝐴  Yrm  - 𝑁 ) ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  - 𝑁  ∈  ℕ0 )  →  0  <  ( 𝐴  Xrm  - 𝑁 ) ) | 
						
							| 17 |  | elnnnn0b | ⊢ ( ( 𝐴  Xrm  - 𝑁 )  ∈  ℕ  ↔  ( ( 𝐴  Xrm  - 𝑁 )  ∈  ℕ0  ∧  0  <  ( 𝐴  Xrm  - 𝑁 ) ) ) | 
						
							| 18 | 14 16 17 | sylanbrc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  - 𝑁  ∈  ℕ0 )  →  ( 𝐴  Xrm  - 𝑁 )  ∈  ℕ ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( 𝐴  Xrm  - 𝑁 )  ∈  ℕ ) | 
						
							| 20 | 11 19 | eqeltrrd | ⊢ ( ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( 𝐴  Xrm  𝑁 )  ∈  ℕ ) | 
						
							| 21 |  | elznn0 | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 22 | 21 | simprbi | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 ) ) | 
						
							| 24 | 9 20 23 | mpjaodan | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  Xrm  𝑁 )  ∈  ℕ ) |