Metamath Proof Explorer


Theorem ltrmy

Description: The Y-sequence is strictly monotonic over ZZ . (Contributed by Stefan O'Rear, 25-Sep-2014)

Ref Expression
Assertion ltrmy ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) < ( 𝐴 Yrm 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 ltrmynn0 ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 ↔ ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) )
2 1 biimpd ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℕ0𝑏 ∈ ℕ0 ) → ( 𝑎 < 𝑏 → ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) )
3 frmy Yrm : ( ( ℤ ‘ 2 ) × ℤ ) ⟶ ℤ
4 3 fovcl ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℤ )
5 4 zred ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℝ )
6 rmyneg ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑏 ∈ ℤ ) → ( 𝐴 Yrm - 𝑏 ) = - ( 𝐴 Yrm 𝑏 ) )
7 oveq2 ( 𝑎 = 𝑀 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑀 ) )
8 oveq2 ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) )
9 oveq2 ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) )
10 oveq2 ( 𝑎 = - 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm - 𝑏 ) )
11 2 5 6 7 8 9 10 monotoddzz ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝐴 Yrm 𝑀 ) < ( 𝐴 Yrm 𝑁 ) ) )