Step |
Hyp |
Ref |
Expression |
1 |
|
ltrmynn0 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 /\ b e. NN0 ) -> ( a < b <-> ( A rmY a ) < ( A rmY b ) ) ) |
2 |
1
|
biimpd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 /\ b e. NN0 ) -> ( a < b -> ( A rmY a ) < ( A rmY b ) ) ) |
3 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
4 |
3
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. ZZ ) |
5 |
4
|
zred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. RR ) |
6 |
|
rmyneg |
|- ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY -u b ) = -u ( A rmY b ) ) |
7 |
|
oveq2 |
|- ( a = M -> ( A rmY a ) = ( A rmY M ) ) |
8 |
|
oveq2 |
|- ( a = N -> ( A rmY a ) = ( A rmY N ) ) |
9 |
|
oveq2 |
|- ( a = b -> ( A rmY a ) = ( A rmY b ) ) |
10 |
|
oveq2 |
|- ( a = -u b -> ( A rmY a ) = ( A rmY -u b ) ) |
11 |
2 5 6 7 8 9 10
|
monotoddzz |
|- ( ( A e. ( ZZ>= ` 2 ) /\ M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( A rmY M ) < ( A rmY N ) ) ) |