| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monotoddzz.1 |
|- ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( x < y -> E < F ) ) |
| 2 |
|
monotoddzz.2 |
|- ( ( ph /\ x e. ZZ ) -> E e. RR ) |
| 3 |
|
monotoddzz.3 |
|- ( ( ph /\ y e. ZZ ) -> G = -u F ) |
| 4 |
|
monotoddzz.4 |
|- ( x = A -> E = C ) |
| 5 |
|
monotoddzz.5 |
|- ( x = B -> E = D ) |
| 6 |
|
monotoddzz.6 |
|- ( x = y -> E = F ) |
| 7 |
|
monotoddzz.7 |
|- ( x = -u y -> E = G ) |
| 8 |
|
nfv |
|- F/ x ( ph /\ a e. ZZ ) |
| 9 |
|
nffvmpt1 |
|- F/_ x ( ( x e. ZZ |-> E ) ` a ) |
| 10 |
9
|
nfel1 |
|- F/ x ( ( x e. ZZ |-> E ) ` a ) e. RR |
| 11 |
8 10
|
nfim |
|- F/ x ( ( ph /\ a e. ZZ ) -> ( ( x e. ZZ |-> E ) ` a ) e. RR ) |
| 12 |
|
eleq1 |
|- ( x = a -> ( x e. ZZ <-> a e. ZZ ) ) |
| 13 |
12
|
anbi2d |
|- ( x = a -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ a e. ZZ ) ) ) |
| 14 |
|
fveq2 |
|- ( x = a -> ( ( x e. ZZ |-> E ) ` x ) = ( ( x e. ZZ |-> E ) ` a ) ) |
| 15 |
14
|
eleq1d |
|- ( x = a -> ( ( ( x e. ZZ |-> E ) ` x ) e. RR <-> ( ( x e. ZZ |-> E ) ` a ) e. RR ) ) |
| 16 |
13 15
|
imbi12d |
|- ( x = a -> ( ( ( ph /\ x e. ZZ ) -> ( ( x e. ZZ |-> E ) ` x ) e. RR ) <-> ( ( ph /\ a e. ZZ ) -> ( ( x e. ZZ |-> E ) ` a ) e. RR ) ) ) |
| 17 |
|
simpr |
|- ( ( ph /\ x e. ZZ ) -> x e. ZZ ) |
| 18 |
|
eqid |
|- ( x e. ZZ |-> E ) = ( x e. ZZ |-> E ) |
| 19 |
18
|
fvmpt2 |
|- ( ( x e. ZZ /\ E e. RR ) -> ( ( x e. ZZ |-> E ) ` x ) = E ) |
| 20 |
17 2 19
|
syl2anc |
|- ( ( ph /\ x e. ZZ ) -> ( ( x e. ZZ |-> E ) ` x ) = E ) |
| 21 |
20 2
|
eqeltrd |
|- ( ( ph /\ x e. ZZ ) -> ( ( x e. ZZ |-> E ) ` x ) e. RR ) |
| 22 |
11 16 21
|
chvarfv |
|- ( ( ph /\ a e. ZZ ) -> ( ( x e. ZZ |-> E ) ` a ) e. RR ) |
| 23 |
|
eleq1 |
|- ( y = a -> ( y e. ZZ <-> a e. ZZ ) ) |
| 24 |
23
|
anbi2d |
|- ( y = a -> ( ( ph /\ y e. ZZ ) <-> ( ph /\ a e. ZZ ) ) ) |
| 25 |
|
negeq |
|- ( y = a -> -u y = -u a ) |
| 26 |
25
|
fveq2d |
|- ( y = a -> ( ( x e. ZZ |-> E ) ` -u y ) = ( ( x e. ZZ |-> E ) ` -u a ) ) |
| 27 |
|
fveq2 |
|- ( y = a -> ( ( x e. ZZ |-> E ) ` y ) = ( ( x e. ZZ |-> E ) ` a ) ) |
| 28 |
27
|
negeqd |
|- ( y = a -> -u ( ( x e. ZZ |-> E ) ` y ) = -u ( ( x e. ZZ |-> E ) ` a ) ) |
| 29 |
26 28
|
eqeq12d |
|- ( y = a -> ( ( ( x e. ZZ |-> E ) ` -u y ) = -u ( ( x e. ZZ |-> E ) ` y ) <-> ( ( x e. ZZ |-> E ) ` -u a ) = -u ( ( x e. ZZ |-> E ) ` a ) ) ) |
| 30 |
24 29
|
imbi12d |
|- ( y = a -> ( ( ( ph /\ y e. ZZ ) -> ( ( x e. ZZ |-> E ) ` -u y ) = -u ( ( x e. ZZ |-> E ) ` y ) ) <-> ( ( ph /\ a e. ZZ ) -> ( ( x e. ZZ |-> E ) ` -u a ) = -u ( ( x e. ZZ |-> E ) ` a ) ) ) ) |
| 31 |
|
znegcl |
|- ( y e. ZZ -> -u y e. ZZ ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ y e. ZZ ) -> -u y e. ZZ ) |
| 33 |
|
negex |
|- -u y e. _V |
| 34 |
|
eleq1 |
|- ( x = -u y -> ( x e. ZZ <-> -u y e. ZZ ) ) |
| 35 |
34
|
anbi2d |
|- ( x = -u y -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ -u y e. ZZ ) ) ) |
| 36 |
7
|
eleq1d |
|- ( x = -u y -> ( E e. RR <-> G e. RR ) ) |
| 37 |
35 36
|
imbi12d |
|- ( x = -u y -> ( ( ( ph /\ x e. ZZ ) -> E e. RR ) <-> ( ( ph /\ -u y e. ZZ ) -> G e. RR ) ) ) |
| 38 |
33 37 2
|
vtocl |
|- ( ( ph /\ -u y e. ZZ ) -> G e. RR ) |
| 39 |
31 38
|
sylan2 |
|- ( ( ph /\ y e. ZZ ) -> G e. RR ) |
| 40 |
18 7 32 39
|
fvmptd3 |
|- ( ( ph /\ y e. ZZ ) -> ( ( x e. ZZ |-> E ) ` -u y ) = G ) |
| 41 |
|
simpr |
|- ( ( ph /\ y e. ZZ ) -> y e. ZZ ) |
| 42 |
|
eleq1 |
|- ( x = y -> ( x e. ZZ <-> y e. ZZ ) ) |
| 43 |
42
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ y e. ZZ ) ) ) |
| 44 |
6
|
eleq1d |
|- ( x = y -> ( E e. RR <-> F e. RR ) ) |
| 45 |
43 44
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. ZZ ) -> E e. RR ) <-> ( ( ph /\ y e. ZZ ) -> F e. RR ) ) ) |
| 46 |
45 2
|
chvarvv |
|- ( ( ph /\ y e. ZZ ) -> F e. RR ) |
| 47 |
18 6 41 46
|
fvmptd3 |
|- ( ( ph /\ y e. ZZ ) -> ( ( x e. ZZ |-> E ) ` y ) = F ) |
| 48 |
47
|
negeqd |
|- ( ( ph /\ y e. ZZ ) -> -u ( ( x e. ZZ |-> E ) ` y ) = -u F ) |
| 49 |
3 40 48
|
3eqtr4d |
|- ( ( ph /\ y e. ZZ ) -> ( ( x e. ZZ |-> E ) ` -u y ) = -u ( ( x e. ZZ |-> E ) ` y ) ) |
| 50 |
30 49
|
chvarvv |
|- ( ( ph /\ a e. ZZ ) -> ( ( x e. ZZ |-> E ) ` -u a ) = -u ( ( x e. ZZ |-> E ) ` a ) ) |
| 51 |
|
nfv |
|- F/ x ( ph /\ a e. NN0 /\ b e. NN0 ) |
| 52 |
|
nfv |
|- F/ x a < b |
| 53 |
|
nfcv |
|- F/_ x < |
| 54 |
|
nffvmpt1 |
|- F/_ x ( ( x e. ZZ |-> E ) ` b ) |
| 55 |
9 53 54
|
nfbr |
|- F/ x ( ( x e. ZZ |-> E ) ` a ) < ( ( x e. ZZ |-> E ) ` b ) |
| 56 |
52 55
|
nfim |
|- F/ x ( a < b -> ( ( x e. ZZ |-> E ) ` a ) < ( ( x e. ZZ |-> E ) ` b ) ) |
| 57 |
51 56
|
nfim |
|- F/ x ( ( ph /\ a e. NN0 /\ b e. NN0 ) -> ( a < b -> ( ( x e. ZZ |-> E ) ` a ) < ( ( x e. ZZ |-> E ) ` b ) ) ) |
| 58 |
|
eleq1 |
|- ( x = a -> ( x e. NN0 <-> a e. NN0 ) ) |
| 59 |
58
|
3anbi2d |
|- ( x = a -> ( ( ph /\ x e. NN0 /\ b e. NN0 ) <-> ( ph /\ a e. NN0 /\ b e. NN0 ) ) ) |
| 60 |
|
breq1 |
|- ( x = a -> ( x < b <-> a < b ) ) |
| 61 |
14
|
breq1d |
|- ( x = a -> ( ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` b ) <-> ( ( x e. ZZ |-> E ) ` a ) < ( ( x e. ZZ |-> E ) ` b ) ) ) |
| 62 |
60 61
|
imbi12d |
|- ( x = a -> ( ( x < b -> ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` b ) ) <-> ( a < b -> ( ( x e. ZZ |-> E ) ` a ) < ( ( x e. ZZ |-> E ) ` b ) ) ) ) |
| 63 |
59 62
|
imbi12d |
|- ( x = a -> ( ( ( ph /\ x e. NN0 /\ b e. NN0 ) -> ( x < b -> ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` b ) ) ) <-> ( ( ph /\ a e. NN0 /\ b e. NN0 ) -> ( a < b -> ( ( x e. ZZ |-> E ) ` a ) < ( ( x e. ZZ |-> E ) ` b ) ) ) ) ) |
| 64 |
|
eleq1 |
|- ( y = b -> ( y e. NN0 <-> b e. NN0 ) ) |
| 65 |
64
|
3anbi3d |
|- ( y = b -> ( ( ph /\ x e. NN0 /\ y e. NN0 ) <-> ( ph /\ x e. NN0 /\ b e. NN0 ) ) ) |
| 66 |
|
breq2 |
|- ( y = b -> ( x < y <-> x < b ) ) |
| 67 |
|
fveq2 |
|- ( y = b -> ( ( x e. ZZ |-> E ) ` y ) = ( ( x e. ZZ |-> E ) ` b ) ) |
| 68 |
67
|
breq2d |
|- ( y = b -> ( ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` y ) <-> ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` b ) ) ) |
| 69 |
66 68
|
imbi12d |
|- ( y = b -> ( ( x < y -> ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` y ) ) <-> ( x < b -> ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` b ) ) ) ) |
| 70 |
65 69
|
imbi12d |
|- ( y = b -> ( ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( x < y -> ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` y ) ) ) <-> ( ( ph /\ x e. NN0 /\ b e. NN0 ) -> ( x < b -> ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` b ) ) ) ) ) |
| 71 |
|
nn0z |
|- ( x e. NN0 -> x e. ZZ ) |
| 72 |
71 20
|
sylan2 |
|- ( ( ph /\ x e. NN0 ) -> ( ( x e. ZZ |-> E ) ` x ) = E ) |
| 73 |
72
|
3adant3 |
|- ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( ( x e. ZZ |-> E ) ` x ) = E ) |
| 74 |
|
nfv |
|- F/ x ( ph /\ y e. NN0 ) |
| 75 |
|
nffvmpt1 |
|- F/_ x ( ( x e. ZZ |-> E ) ` y ) |
| 76 |
75
|
nfeq1 |
|- F/ x ( ( x e. ZZ |-> E ) ` y ) = F |
| 77 |
74 76
|
nfim |
|- F/ x ( ( ph /\ y e. NN0 ) -> ( ( x e. ZZ |-> E ) ` y ) = F ) |
| 78 |
|
eleq1 |
|- ( x = y -> ( x e. NN0 <-> y e. NN0 ) ) |
| 79 |
78
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. NN0 ) <-> ( ph /\ y e. NN0 ) ) ) |
| 80 |
|
fveq2 |
|- ( x = y -> ( ( x e. ZZ |-> E ) ` x ) = ( ( x e. ZZ |-> E ) ` y ) ) |
| 81 |
80 6
|
eqeq12d |
|- ( x = y -> ( ( ( x e. ZZ |-> E ) ` x ) = E <-> ( ( x e. ZZ |-> E ) ` y ) = F ) ) |
| 82 |
79 81
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. NN0 ) -> ( ( x e. ZZ |-> E ) ` x ) = E ) <-> ( ( ph /\ y e. NN0 ) -> ( ( x e. ZZ |-> E ) ` y ) = F ) ) ) |
| 83 |
77 82 72
|
chvarfv |
|- ( ( ph /\ y e. NN0 ) -> ( ( x e. ZZ |-> E ) ` y ) = F ) |
| 84 |
83
|
3adant2 |
|- ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( ( x e. ZZ |-> E ) ` y ) = F ) |
| 85 |
73 84
|
breq12d |
|- ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` y ) <-> E < F ) ) |
| 86 |
1 85
|
sylibrd |
|- ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( x < y -> ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` y ) ) ) |
| 87 |
70 86
|
chvarvv |
|- ( ( ph /\ x e. NN0 /\ b e. NN0 ) -> ( x < b -> ( ( x e. ZZ |-> E ) ` x ) < ( ( x e. ZZ |-> E ) ` b ) ) ) |
| 88 |
57 63 87
|
chvarfv |
|- ( ( ph /\ a e. NN0 /\ b e. NN0 ) -> ( a < b -> ( ( x e. ZZ |-> E ) ` a ) < ( ( x e. ZZ |-> E ) ` b ) ) ) |
| 89 |
22 50 88
|
monotoddzzfi |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> ( A < B <-> ( ( x e. ZZ |-> E ) ` A ) < ( ( x e. ZZ |-> E ) ` B ) ) ) |
| 90 |
|
simp2 |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
| 91 |
|
eleq1 |
|- ( x = A -> ( x e. ZZ <-> A e. ZZ ) ) |
| 92 |
91
|
anbi2d |
|- ( x = A -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ A e. ZZ ) ) ) |
| 93 |
4
|
eleq1d |
|- ( x = A -> ( E e. RR <-> C e. RR ) ) |
| 94 |
92 93
|
imbi12d |
|- ( x = A -> ( ( ( ph /\ x e. ZZ ) -> E e. RR ) <-> ( ( ph /\ A e. ZZ ) -> C e. RR ) ) ) |
| 95 |
94 2
|
vtoclg |
|- ( A e. ZZ -> ( ( ph /\ A e. ZZ ) -> C e. RR ) ) |
| 96 |
95
|
anabsi7 |
|- ( ( ph /\ A e. ZZ ) -> C e. RR ) |
| 97 |
96
|
3adant3 |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> C e. RR ) |
| 98 |
18 4 90 97
|
fvmptd3 |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> ( ( x e. ZZ |-> E ) ` A ) = C ) |
| 99 |
|
simp3 |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> B e. ZZ ) |
| 100 |
|
eleq1 |
|- ( x = B -> ( x e. ZZ <-> B e. ZZ ) ) |
| 101 |
100
|
anbi2d |
|- ( x = B -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ B e. ZZ ) ) ) |
| 102 |
5
|
eleq1d |
|- ( x = B -> ( E e. RR <-> D e. RR ) ) |
| 103 |
101 102
|
imbi12d |
|- ( x = B -> ( ( ( ph /\ x e. ZZ ) -> E e. RR ) <-> ( ( ph /\ B e. ZZ ) -> D e. RR ) ) ) |
| 104 |
103 2
|
vtoclg |
|- ( B e. ZZ -> ( ( ph /\ B e. ZZ ) -> D e. RR ) ) |
| 105 |
104
|
anabsi7 |
|- ( ( ph /\ B e. ZZ ) -> D e. RR ) |
| 106 |
105
|
3adant2 |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> D e. RR ) |
| 107 |
18 5 99 106
|
fvmptd3 |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> ( ( x e. ZZ |-> E ) ` B ) = D ) |
| 108 |
98 107
|
breq12d |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> ( ( ( x e. ZZ |-> E ) ` A ) < ( ( x e. ZZ |-> E ) ` B ) <-> C < D ) ) |
| 109 |
89 108
|
bitrd |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> ( A < B <-> C < D ) ) |