| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddcomabszz.1 |  |-  ( ( ph /\ x e. ZZ ) -> A e. RR ) | 
						
							| 2 |  | oddcomabszz.2 |  |-  ( ( ph /\ x e. ZZ /\ 0 <_ x ) -> 0 <_ A ) | 
						
							| 3 |  | oddcomabszz.3 |  |-  ( ( ph /\ y e. ZZ ) -> C = -u B ) | 
						
							| 4 |  | oddcomabszz.4 |  |-  ( x = y -> A = B ) | 
						
							| 5 |  | oddcomabszz.5 |  |-  ( x = -u y -> A = C ) | 
						
							| 6 |  | oddcomabszz.6 |  |-  ( x = D -> A = E ) | 
						
							| 7 |  | oddcomabszz.7 |  |-  ( x = ( abs ` D ) -> A = F ) | 
						
							| 8 |  | eleq1 |  |-  ( a = D -> ( a e. ZZ <-> D e. ZZ ) ) | 
						
							| 9 | 8 | anbi2d |  |-  ( a = D -> ( ( ph /\ a e. ZZ ) <-> ( ph /\ D e. ZZ ) ) ) | 
						
							| 10 |  | csbeq1 |  |-  ( a = D -> [_ a / x ]_ A = [_ D / x ]_ A ) | 
						
							| 11 | 10 | fveq2d |  |-  ( a = D -> ( abs ` [_ a / x ]_ A ) = ( abs ` [_ D / x ]_ A ) ) | 
						
							| 12 |  | fveq2 |  |-  ( a = D -> ( abs ` a ) = ( abs ` D ) ) | 
						
							| 13 | 12 | csbeq1d |  |-  ( a = D -> [_ ( abs ` a ) / x ]_ A = [_ ( abs ` D ) / x ]_ A ) | 
						
							| 14 | 11 13 | eqeq12d |  |-  ( a = D -> ( ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A <-> ( abs ` [_ D / x ]_ A ) = [_ ( abs ` D ) / x ]_ A ) ) | 
						
							| 15 | 9 14 | imbi12d |  |-  ( a = D -> ( ( ( ph /\ a e. ZZ ) -> ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A ) <-> ( ( ph /\ D e. ZZ ) -> ( abs ` [_ D / x ]_ A ) = [_ ( abs ` D ) / x ]_ A ) ) ) | 
						
							| 16 |  | nfv |  |-  F/ x ( ph /\ a e. ZZ ) | 
						
							| 17 |  | nfcsb1v |  |-  F/_ x [_ a / x ]_ A | 
						
							| 18 | 17 | nfel1 |  |-  F/ x [_ a / x ]_ A e. RR | 
						
							| 19 | 16 18 | nfim |  |-  F/ x ( ( ph /\ a e. ZZ ) -> [_ a / x ]_ A e. RR ) | 
						
							| 20 |  | eleq1 |  |-  ( x = a -> ( x e. ZZ <-> a e. ZZ ) ) | 
						
							| 21 | 20 | anbi2d |  |-  ( x = a -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ a e. ZZ ) ) ) | 
						
							| 22 |  | csbeq1a |  |-  ( x = a -> A = [_ a / x ]_ A ) | 
						
							| 23 | 22 | eleq1d |  |-  ( x = a -> ( A e. RR <-> [_ a / x ]_ A e. RR ) ) | 
						
							| 24 | 21 23 | imbi12d |  |-  ( x = a -> ( ( ( ph /\ x e. ZZ ) -> A e. RR ) <-> ( ( ph /\ a e. ZZ ) -> [_ a / x ]_ A e. RR ) ) ) | 
						
							| 25 | 19 24 1 | chvarfv |  |-  ( ( ph /\ a e. ZZ ) -> [_ a / x ]_ A e. RR ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> [_ a / x ]_ A e. RR ) | 
						
							| 27 |  | nfv |  |-  F/ x ( ph /\ a e. ZZ /\ 0 <_ a ) | 
						
							| 28 |  | nfcv |  |-  F/_ x 0 | 
						
							| 29 |  | nfcv |  |-  F/_ x <_ | 
						
							| 30 | 28 29 17 | nfbr |  |-  F/ x 0 <_ [_ a / x ]_ A | 
						
							| 31 | 27 30 | nfim |  |-  F/ x ( ( ph /\ a e. ZZ /\ 0 <_ a ) -> 0 <_ [_ a / x ]_ A ) | 
						
							| 32 |  | breq2 |  |-  ( x = a -> ( 0 <_ x <-> 0 <_ a ) ) | 
						
							| 33 | 20 32 | 3anbi23d |  |-  ( x = a -> ( ( ph /\ x e. ZZ /\ 0 <_ x ) <-> ( ph /\ a e. ZZ /\ 0 <_ a ) ) ) | 
						
							| 34 | 22 | breq2d |  |-  ( x = a -> ( 0 <_ A <-> 0 <_ [_ a / x ]_ A ) ) | 
						
							| 35 | 33 34 | imbi12d |  |-  ( x = a -> ( ( ( ph /\ x e. ZZ /\ 0 <_ x ) -> 0 <_ A ) <-> ( ( ph /\ a e. ZZ /\ 0 <_ a ) -> 0 <_ [_ a / x ]_ A ) ) ) | 
						
							| 36 | 31 35 2 | chvarfv |  |-  ( ( ph /\ a e. ZZ /\ 0 <_ a ) -> 0 <_ [_ a / x ]_ A ) | 
						
							| 37 | 36 | 3expa |  |-  ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> 0 <_ [_ a / x ]_ A ) | 
						
							| 38 | 26 37 | absidd |  |-  ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> ( abs ` [_ a / x ]_ A ) = [_ a / x ]_ A ) | 
						
							| 39 |  | zre |  |-  ( a e. ZZ -> a e. RR ) | 
						
							| 40 | 39 | ad2antlr |  |-  ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> a e. RR ) | 
						
							| 41 |  | absid |  |-  ( ( a e. RR /\ 0 <_ a ) -> ( abs ` a ) = a ) | 
						
							| 42 | 40 41 | sylancom |  |-  ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> ( abs ` a ) = a ) | 
						
							| 43 | 42 | csbeq1d |  |-  ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> [_ ( abs ` a ) / x ]_ A = [_ a / x ]_ A ) | 
						
							| 44 | 38 43 | eqtr4d |  |-  ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A ) | 
						
							| 45 |  | nfv |  |-  F/ y ( ( ph /\ a e. ZZ ) -> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) | 
						
							| 46 |  | eleq1 |  |-  ( y = a -> ( y e. ZZ <-> a e. ZZ ) ) | 
						
							| 47 | 46 | anbi2d |  |-  ( y = a -> ( ( ph /\ y e. ZZ ) <-> ( ph /\ a e. ZZ ) ) ) | 
						
							| 48 |  | negex |  |-  -u y e. _V | 
						
							| 49 | 48 5 | csbie |  |-  [_ -u y / x ]_ A = C | 
						
							| 50 |  | negeq |  |-  ( y = a -> -u y = -u a ) | 
						
							| 51 | 50 | csbeq1d |  |-  ( y = a -> [_ -u y / x ]_ A = [_ -u a / x ]_ A ) | 
						
							| 52 | 49 51 | eqtr3id |  |-  ( y = a -> C = [_ -u a / x ]_ A ) | 
						
							| 53 |  | vex |  |-  y e. _V | 
						
							| 54 | 53 4 | csbie |  |-  [_ y / x ]_ A = B | 
						
							| 55 |  | csbeq1 |  |-  ( y = a -> [_ y / x ]_ A = [_ a / x ]_ A ) | 
						
							| 56 | 54 55 | eqtr3id |  |-  ( y = a -> B = [_ a / x ]_ A ) | 
						
							| 57 | 56 | negeqd |  |-  ( y = a -> -u B = -u [_ a / x ]_ A ) | 
						
							| 58 | 52 57 | eqeq12d |  |-  ( y = a -> ( C = -u B <-> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) ) | 
						
							| 59 | 47 58 | imbi12d |  |-  ( y = a -> ( ( ( ph /\ y e. ZZ ) -> C = -u B ) <-> ( ( ph /\ a e. ZZ ) -> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) ) ) | 
						
							| 60 | 45 59 3 | chvarfv |  |-  ( ( ph /\ a e. ZZ ) -> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) | 
						
							| 62 | 39 | ad2antlr |  |-  ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> a e. RR ) | 
						
							| 63 |  | absnid |  |-  ( ( a e. RR /\ a <_ 0 ) -> ( abs ` a ) = -u a ) | 
						
							| 64 | 62 63 | sylancom |  |-  ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> ( abs ` a ) = -u a ) | 
						
							| 65 | 64 | csbeq1d |  |-  ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> [_ ( abs ` a ) / x ]_ A = [_ -u a / x ]_ A ) | 
						
							| 66 | 25 | adantr |  |-  ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> [_ a / x ]_ A e. RR ) | 
						
							| 67 |  | znegcl |  |-  ( a e. ZZ -> -u a e. ZZ ) | 
						
							| 68 |  | nfv |  |-  F/ x ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) | 
						
							| 69 |  | nfcsb1v |  |-  F/_ x [_ -u a / x ]_ A | 
						
							| 70 | 28 29 69 | nfbr |  |-  F/ x 0 <_ [_ -u a / x ]_ A | 
						
							| 71 | 68 70 | nfim |  |-  F/ x ( ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) -> 0 <_ [_ -u a / x ]_ A ) | 
						
							| 72 |  | negex |  |-  -u a e. _V | 
						
							| 73 |  | eleq1 |  |-  ( x = -u a -> ( x e. ZZ <-> -u a e. ZZ ) ) | 
						
							| 74 |  | breq2 |  |-  ( x = -u a -> ( 0 <_ x <-> 0 <_ -u a ) ) | 
						
							| 75 | 73 74 | 3anbi23d |  |-  ( x = -u a -> ( ( ph /\ x e. ZZ /\ 0 <_ x ) <-> ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) ) ) | 
						
							| 76 |  | csbeq1a |  |-  ( x = -u a -> A = [_ -u a / x ]_ A ) | 
						
							| 77 | 76 | breq2d |  |-  ( x = -u a -> ( 0 <_ A <-> 0 <_ [_ -u a / x ]_ A ) ) | 
						
							| 78 | 75 77 | imbi12d |  |-  ( x = -u a -> ( ( ( ph /\ x e. ZZ /\ 0 <_ x ) -> 0 <_ A ) <-> ( ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) -> 0 <_ [_ -u a / x ]_ A ) ) ) | 
						
							| 79 | 71 72 78 2 | vtoclf |  |-  ( ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) -> 0 <_ [_ -u a / x ]_ A ) | 
						
							| 80 | 79 | 3expia |  |-  ( ( ph /\ -u a e. ZZ ) -> ( 0 <_ -u a -> 0 <_ [_ -u a / x ]_ A ) ) | 
						
							| 81 | 67 80 | sylan2 |  |-  ( ( ph /\ a e. ZZ ) -> ( 0 <_ -u a -> 0 <_ [_ -u a / x ]_ A ) ) | 
						
							| 82 | 60 | breq2d |  |-  ( ( ph /\ a e. ZZ ) -> ( 0 <_ [_ -u a / x ]_ A <-> 0 <_ -u [_ a / x ]_ A ) ) | 
						
							| 83 | 81 82 | sylibd |  |-  ( ( ph /\ a e. ZZ ) -> ( 0 <_ -u a -> 0 <_ -u [_ a / x ]_ A ) ) | 
						
							| 84 | 39 | adantl |  |-  ( ( ph /\ a e. ZZ ) -> a e. RR ) | 
						
							| 85 | 84 | le0neg1d |  |-  ( ( ph /\ a e. ZZ ) -> ( a <_ 0 <-> 0 <_ -u a ) ) | 
						
							| 86 | 25 | le0neg1d |  |-  ( ( ph /\ a e. ZZ ) -> ( [_ a / x ]_ A <_ 0 <-> 0 <_ -u [_ a / x ]_ A ) ) | 
						
							| 87 | 83 85 86 | 3imtr4d |  |-  ( ( ph /\ a e. ZZ ) -> ( a <_ 0 -> [_ a / x ]_ A <_ 0 ) ) | 
						
							| 88 | 87 | imp |  |-  ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> [_ a / x ]_ A <_ 0 ) | 
						
							| 89 | 66 88 | absnidd |  |-  ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> ( abs ` [_ a / x ]_ A ) = -u [_ a / x ]_ A ) | 
						
							| 90 | 61 65 89 | 3eqtr4rd |  |-  ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A ) | 
						
							| 91 |  | 0re |  |-  0 e. RR | 
						
							| 92 |  | letric |  |-  ( ( 0 e. RR /\ a e. RR ) -> ( 0 <_ a \/ a <_ 0 ) ) | 
						
							| 93 | 91 39 92 | sylancr |  |-  ( a e. ZZ -> ( 0 <_ a \/ a <_ 0 ) ) | 
						
							| 94 | 93 | adantl |  |-  ( ( ph /\ a e. ZZ ) -> ( 0 <_ a \/ a <_ 0 ) ) | 
						
							| 95 | 44 90 94 | mpjaodan |  |-  ( ( ph /\ a e. ZZ ) -> ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A ) | 
						
							| 96 | 15 95 | vtoclg |  |-  ( D e. ZZ -> ( ( ph /\ D e. ZZ ) -> ( abs ` [_ D / x ]_ A ) = [_ ( abs ` D ) / x ]_ A ) ) | 
						
							| 97 | 96 | anabsi7 |  |-  ( ( ph /\ D e. ZZ ) -> ( abs ` [_ D / x ]_ A ) = [_ ( abs ` D ) / x ]_ A ) | 
						
							| 98 |  | nfcvd |  |-  ( D e. ZZ -> F/_ x E ) | 
						
							| 99 | 98 6 | csbiegf |  |-  ( D e. ZZ -> [_ D / x ]_ A = E ) | 
						
							| 100 | 99 | fveq2d |  |-  ( D e. ZZ -> ( abs ` [_ D / x ]_ A ) = ( abs ` E ) ) | 
						
							| 101 | 100 | adantl |  |-  ( ( ph /\ D e. ZZ ) -> ( abs ` [_ D / x ]_ A ) = ( abs ` E ) ) | 
						
							| 102 |  | fvex |  |-  ( abs ` D ) e. _V | 
						
							| 103 | 102 7 | csbie |  |-  [_ ( abs ` D ) / x ]_ A = F | 
						
							| 104 | 103 | a1i |  |-  ( ( ph /\ D e. ZZ ) -> [_ ( abs ` D ) / x ]_ A = F ) | 
						
							| 105 | 97 101 104 | 3eqtr3d |  |-  ( ( ph /\ D e. ZZ ) -> ( abs ` E ) = F ) |