Step |
Hyp |
Ref |
Expression |
1 |
|
oddcomabszz.1 |
|- ( ( ph /\ x e. ZZ ) -> A e. RR ) |
2 |
|
oddcomabszz.2 |
|- ( ( ph /\ x e. ZZ /\ 0 <_ x ) -> 0 <_ A ) |
3 |
|
oddcomabszz.3 |
|- ( ( ph /\ y e. ZZ ) -> C = -u B ) |
4 |
|
oddcomabszz.4 |
|- ( x = y -> A = B ) |
5 |
|
oddcomabszz.5 |
|- ( x = -u y -> A = C ) |
6 |
|
oddcomabszz.6 |
|- ( x = D -> A = E ) |
7 |
|
oddcomabszz.7 |
|- ( x = ( abs ` D ) -> A = F ) |
8 |
|
eleq1 |
|- ( a = D -> ( a e. ZZ <-> D e. ZZ ) ) |
9 |
8
|
anbi2d |
|- ( a = D -> ( ( ph /\ a e. ZZ ) <-> ( ph /\ D e. ZZ ) ) ) |
10 |
|
csbeq1 |
|- ( a = D -> [_ a / x ]_ A = [_ D / x ]_ A ) |
11 |
10
|
fveq2d |
|- ( a = D -> ( abs ` [_ a / x ]_ A ) = ( abs ` [_ D / x ]_ A ) ) |
12 |
|
fveq2 |
|- ( a = D -> ( abs ` a ) = ( abs ` D ) ) |
13 |
12
|
csbeq1d |
|- ( a = D -> [_ ( abs ` a ) / x ]_ A = [_ ( abs ` D ) / x ]_ A ) |
14 |
11 13
|
eqeq12d |
|- ( a = D -> ( ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A <-> ( abs ` [_ D / x ]_ A ) = [_ ( abs ` D ) / x ]_ A ) ) |
15 |
9 14
|
imbi12d |
|- ( a = D -> ( ( ( ph /\ a e. ZZ ) -> ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A ) <-> ( ( ph /\ D e. ZZ ) -> ( abs ` [_ D / x ]_ A ) = [_ ( abs ` D ) / x ]_ A ) ) ) |
16 |
|
nfv |
|- F/ x ( ph /\ a e. ZZ ) |
17 |
|
nfcsb1v |
|- F/_ x [_ a / x ]_ A |
18 |
17
|
nfel1 |
|- F/ x [_ a / x ]_ A e. RR |
19 |
16 18
|
nfim |
|- F/ x ( ( ph /\ a e. ZZ ) -> [_ a / x ]_ A e. RR ) |
20 |
|
eleq1 |
|- ( x = a -> ( x e. ZZ <-> a e. ZZ ) ) |
21 |
20
|
anbi2d |
|- ( x = a -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ a e. ZZ ) ) ) |
22 |
|
csbeq1a |
|- ( x = a -> A = [_ a / x ]_ A ) |
23 |
22
|
eleq1d |
|- ( x = a -> ( A e. RR <-> [_ a / x ]_ A e. RR ) ) |
24 |
21 23
|
imbi12d |
|- ( x = a -> ( ( ( ph /\ x e. ZZ ) -> A e. RR ) <-> ( ( ph /\ a e. ZZ ) -> [_ a / x ]_ A e. RR ) ) ) |
25 |
19 24 1
|
chvarfv |
|- ( ( ph /\ a e. ZZ ) -> [_ a / x ]_ A e. RR ) |
26 |
25
|
adantr |
|- ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> [_ a / x ]_ A e. RR ) |
27 |
|
nfv |
|- F/ x ( ph /\ a e. ZZ /\ 0 <_ a ) |
28 |
|
nfcv |
|- F/_ x 0 |
29 |
|
nfcv |
|- F/_ x <_ |
30 |
28 29 17
|
nfbr |
|- F/ x 0 <_ [_ a / x ]_ A |
31 |
27 30
|
nfim |
|- F/ x ( ( ph /\ a e. ZZ /\ 0 <_ a ) -> 0 <_ [_ a / x ]_ A ) |
32 |
|
breq2 |
|- ( x = a -> ( 0 <_ x <-> 0 <_ a ) ) |
33 |
20 32
|
3anbi23d |
|- ( x = a -> ( ( ph /\ x e. ZZ /\ 0 <_ x ) <-> ( ph /\ a e. ZZ /\ 0 <_ a ) ) ) |
34 |
22
|
breq2d |
|- ( x = a -> ( 0 <_ A <-> 0 <_ [_ a / x ]_ A ) ) |
35 |
33 34
|
imbi12d |
|- ( x = a -> ( ( ( ph /\ x e. ZZ /\ 0 <_ x ) -> 0 <_ A ) <-> ( ( ph /\ a e. ZZ /\ 0 <_ a ) -> 0 <_ [_ a / x ]_ A ) ) ) |
36 |
31 35 2
|
chvarfv |
|- ( ( ph /\ a e. ZZ /\ 0 <_ a ) -> 0 <_ [_ a / x ]_ A ) |
37 |
36
|
3expa |
|- ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> 0 <_ [_ a / x ]_ A ) |
38 |
26 37
|
absidd |
|- ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> ( abs ` [_ a / x ]_ A ) = [_ a / x ]_ A ) |
39 |
|
zre |
|- ( a e. ZZ -> a e. RR ) |
40 |
39
|
ad2antlr |
|- ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> a e. RR ) |
41 |
|
absid |
|- ( ( a e. RR /\ 0 <_ a ) -> ( abs ` a ) = a ) |
42 |
40 41
|
sylancom |
|- ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> ( abs ` a ) = a ) |
43 |
42
|
csbeq1d |
|- ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> [_ ( abs ` a ) / x ]_ A = [_ a / x ]_ A ) |
44 |
38 43
|
eqtr4d |
|- ( ( ( ph /\ a e. ZZ ) /\ 0 <_ a ) -> ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A ) |
45 |
|
nfv |
|- F/ y ( ( ph /\ a e. ZZ ) -> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) |
46 |
|
eleq1 |
|- ( y = a -> ( y e. ZZ <-> a e. ZZ ) ) |
47 |
46
|
anbi2d |
|- ( y = a -> ( ( ph /\ y e. ZZ ) <-> ( ph /\ a e. ZZ ) ) ) |
48 |
|
negex |
|- -u y e. _V |
49 |
48 5
|
csbie |
|- [_ -u y / x ]_ A = C |
50 |
|
negeq |
|- ( y = a -> -u y = -u a ) |
51 |
50
|
csbeq1d |
|- ( y = a -> [_ -u y / x ]_ A = [_ -u a / x ]_ A ) |
52 |
49 51
|
eqtr3id |
|- ( y = a -> C = [_ -u a / x ]_ A ) |
53 |
|
vex |
|- y e. _V |
54 |
53 4
|
csbie |
|- [_ y / x ]_ A = B |
55 |
|
csbeq1 |
|- ( y = a -> [_ y / x ]_ A = [_ a / x ]_ A ) |
56 |
54 55
|
eqtr3id |
|- ( y = a -> B = [_ a / x ]_ A ) |
57 |
56
|
negeqd |
|- ( y = a -> -u B = -u [_ a / x ]_ A ) |
58 |
52 57
|
eqeq12d |
|- ( y = a -> ( C = -u B <-> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) ) |
59 |
47 58
|
imbi12d |
|- ( y = a -> ( ( ( ph /\ y e. ZZ ) -> C = -u B ) <-> ( ( ph /\ a e. ZZ ) -> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) ) ) |
60 |
45 59 3
|
chvarfv |
|- ( ( ph /\ a e. ZZ ) -> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) |
61 |
60
|
adantr |
|- ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> [_ -u a / x ]_ A = -u [_ a / x ]_ A ) |
62 |
39
|
ad2antlr |
|- ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> a e. RR ) |
63 |
|
absnid |
|- ( ( a e. RR /\ a <_ 0 ) -> ( abs ` a ) = -u a ) |
64 |
62 63
|
sylancom |
|- ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> ( abs ` a ) = -u a ) |
65 |
64
|
csbeq1d |
|- ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> [_ ( abs ` a ) / x ]_ A = [_ -u a / x ]_ A ) |
66 |
25
|
adantr |
|- ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> [_ a / x ]_ A e. RR ) |
67 |
|
znegcl |
|- ( a e. ZZ -> -u a e. ZZ ) |
68 |
|
nfv |
|- F/ x ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) |
69 |
|
nfcsb1v |
|- F/_ x [_ -u a / x ]_ A |
70 |
28 29 69
|
nfbr |
|- F/ x 0 <_ [_ -u a / x ]_ A |
71 |
68 70
|
nfim |
|- F/ x ( ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) -> 0 <_ [_ -u a / x ]_ A ) |
72 |
|
negex |
|- -u a e. _V |
73 |
|
eleq1 |
|- ( x = -u a -> ( x e. ZZ <-> -u a e. ZZ ) ) |
74 |
|
breq2 |
|- ( x = -u a -> ( 0 <_ x <-> 0 <_ -u a ) ) |
75 |
73 74
|
3anbi23d |
|- ( x = -u a -> ( ( ph /\ x e. ZZ /\ 0 <_ x ) <-> ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) ) ) |
76 |
|
csbeq1a |
|- ( x = -u a -> A = [_ -u a / x ]_ A ) |
77 |
76
|
breq2d |
|- ( x = -u a -> ( 0 <_ A <-> 0 <_ [_ -u a / x ]_ A ) ) |
78 |
75 77
|
imbi12d |
|- ( x = -u a -> ( ( ( ph /\ x e. ZZ /\ 0 <_ x ) -> 0 <_ A ) <-> ( ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) -> 0 <_ [_ -u a / x ]_ A ) ) ) |
79 |
71 72 78 2
|
vtoclf |
|- ( ( ph /\ -u a e. ZZ /\ 0 <_ -u a ) -> 0 <_ [_ -u a / x ]_ A ) |
80 |
79
|
3expia |
|- ( ( ph /\ -u a e. ZZ ) -> ( 0 <_ -u a -> 0 <_ [_ -u a / x ]_ A ) ) |
81 |
67 80
|
sylan2 |
|- ( ( ph /\ a e. ZZ ) -> ( 0 <_ -u a -> 0 <_ [_ -u a / x ]_ A ) ) |
82 |
60
|
breq2d |
|- ( ( ph /\ a e. ZZ ) -> ( 0 <_ [_ -u a / x ]_ A <-> 0 <_ -u [_ a / x ]_ A ) ) |
83 |
81 82
|
sylibd |
|- ( ( ph /\ a e. ZZ ) -> ( 0 <_ -u a -> 0 <_ -u [_ a / x ]_ A ) ) |
84 |
39
|
adantl |
|- ( ( ph /\ a e. ZZ ) -> a e. RR ) |
85 |
84
|
le0neg1d |
|- ( ( ph /\ a e. ZZ ) -> ( a <_ 0 <-> 0 <_ -u a ) ) |
86 |
25
|
le0neg1d |
|- ( ( ph /\ a e. ZZ ) -> ( [_ a / x ]_ A <_ 0 <-> 0 <_ -u [_ a / x ]_ A ) ) |
87 |
83 85 86
|
3imtr4d |
|- ( ( ph /\ a e. ZZ ) -> ( a <_ 0 -> [_ a / x ]_ A <_ 0 ) ) |
88 |
87
|
imp |
|- ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> [_ a / x ]_ A <_ 0 ) |
89 |
66 88
|
absnidd |
|- ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> ( abs ` [_ a / x ]_ A ) = -u [_ a / x ]_ A ) |
90 |
61 65 89
|
3eqtr4rd |
|- ( ( ( ph /\ a e. ZZ ) /\ a <_ 0 ) -> ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A ) |
91 |
|
0re |
|- 0 e. RR |
92 |
|
letric |
|- ( ( 0 e. RR /\ a e. RR ) -> ( 0 <_ a \/ a <_ 0 ) ) |
93 |
91 39 92
|
sylancr |
|- ( a e. ZZ -> ( 0 <_ a \/ a <_ 0 ) ) |
94 |
93
|
adantl |
|- ( ( ph /\ a e. ZZ ) -> ( 0 <_ a \/ a <_ 0 ) ) |
95 |
44 90 94
|
mpjaodan |
|- ( ( ph /\ a e. ZZ ) -> ( abs ` [_ a / x ]_ A ) = [_ ( abs ` a ) / x ]_ A ) |
96 |
15 95
|
vtoclg |
|- ( D e. ZZ -> ( ( ph /\ D e. ZZ ) -> ( abs ` [_ D / x ]_ A ) = [_ ( abs ` D ) / x ]_ A ) ) |
97 |
96
|
anabsi7 |
|- ( ( ph /\ D e. ZZ ) -> ( abs ` [_ D / x ]_ A ) = [_ ( abs ` D ) / x ]_ A ) |
98 |
|
nfcvd |
|- ( D e. ZZ -> F/_ x E ) |
99 |
98 6
|
csbiegf |
|- ( D e. ZZ -> [_ D / x ]_ A = E ) |
100 |
99
|
fveq2d |
|- ( D e. ZZ -> ( abs ` [_ D / x ]_ A ) = ( abs ` E ) ) |
101 |
100
|
adantl |
|- ( ( ph /\ D e. ZZ ) -> ( abs ` [_ D / x ]_ A ) = ( abs ` E ) ) |
102 |
|
fvex |
|- ( abs ` D ) e. _V |
103 |
102 7
|
csbie |
|- [_ ( abs ` D ) / x ]_ A = F |
104 |
103
|
a1i |
|- ( ( ph /\ D e. ZZ ) -> [_ ( abs ` D ) / x ]_ A = F ) |
105 |
97 101 104
|
3eqtr3d |
|- ( ( ph /\ D e. ZZ ) -> ( abs ` E ) = F ) |