| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn0ind.1 |  |-  ps | 
						
							| 2 |  | 2nn0ind.2 |  |-  ch | 
						
							| 3 |  | 2nn0ind.3 |  |-  ( y e. NN -> ( ( th /\ ta ) -> et ) ) | 
						
							| 4 |  | 2nn0ind.4 |  |-  ( x = 0 -> ( ph <-> ps ) ) | 
						
							| 5 |  | 2nn0ind.5 |  |-  ( x = 1 -> ( ph <-> ch ) ) | 
						
							| 6 |  | 2nn0ind.6 |  |-  ( x = ( y - 1 ) -> ( ph <-> th ) ) | 
						
							| 7 |  | 2nn0ind.7 |  |-  ( x = y -> ( ph <-> ta ) ) | 
						
							| 8 |  | 2nn0ind.8 |  |-  ( x = ( y + 1 ) -> ( ph <-> et ) ) | 
						
							| 9 |  | 2nn0ind.9 |  |-  ( x = A -> ( ph <-> rh ) ) | 
						
							| 10 |  | nn0p1nn |  |-  ( A e. NN0 -> ( A + 1 ) e. NN ) | 
						
							| 11 |  | oveq1 |  |-  ( a = 1 -> ( a - 1 ) = ( 1 - 1 ) ) | 
						
							| 12 | 11 | sbceq1d |  |-  ( a = 1 -> ( [. ( a - 1 ) / x ]. ph <-> [. ( 1 - 1 ) / x ]. ph ) ) | 
						
							| 13 |  | dfsbcq |  |-  ( a = 1 -> ( [. a / x ]. ph <-> [. 1 / x ]. ph ) ) | 
						
							| 14 | 12 13 | anbi12d |  |-  ( a = 1 -> ( ( [. ( a - 1 ) / x ]. ph /\ [. a / x ]. ph ) <-> ( [. ( 1 - 1 ) / x ]. ph /\ [. 1 / x ]. ph ) ) ) | 
						
							| 15 |  | oveq1 |  |-  ( a = y -> ( a - 1 ) = ( y - 1 ) ) | 
						
							| 16 | 15 | sbceq1d |  |-  ( a = y -> ( [. ( a - 1 ) / x ]. ph <-> [. ( y - 1 ) / x ]. ph ) ) | 
						
							| 17 |  | dfsbcq |  |-  ( a = y -> ( [. a / x ]. ph <-> [. y / x ]. ph ) ) | 
						
							| 18 | 16 17 | anbi12d |  |-  ( a = y -> ( ( [. ( a - 1 ) / x ]. ph /\ [. a / x ]. ph ) <-> ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) ) | 
						
							| 19 |  | oveq1 |  |-  ( a = ( y + 1 ) -> ( a - 1 ) = ( ( y + 1 ) - 1 ) ) | 
						
							| 20 | 19 | sbceq1d |  |-  ( a = ( y + 1 ) -> ( [. ( a - 1 ) / x ]. ph <-> [. ( ( y + 1 ) - 1 ) / x ]. ph ) ) | 
						
							| 21 |  | dfsbcq |  |-  ( a = ( y + 1 ) -> ( [. a / x ]. ph <-> [. ( y + 1 ) / x ]. ph ) ) | 
						
							| 22 | 20 21 | anbi12d |  |-  ( a = ( y + 1 ) -> ( ( [. ( a - 1 ) / x ]. ph /\ [. a / x ]. ph ) <-> ( [. ( ( y + 1 ) - 1 ) / x ]. ph /\ [. ( y + 1 ) / x ]. ph ) ) ) | 
						
							| 23 |  | oveq1 |  |-  ( a = ( A + 1 ) -> ( a - 1 ) = ( ( A + 1 ) - 1 ) ) | 
						
							| 24 | 23 | sbceq1d |  |-  ( a = ( A + 1 ) -> ( [. ( a - 1 ) / x ]. ph <-> [. ( ( A + 1 ) - 1 ) / x ]. ph ) ) | 
						
							| 25 |  | dfsbcq |  |-  ( a = ( A + 1 ) -> ( [. a / x ]. ph <-> [. ( A + 1 ) / x ]. ph ) ) | 
						
							| 26 | 24 25 | anbi12d |  |-  ( a = ( A + 1 ) -> ( ( [. ( a - 1 ) / x ]. ph /\ [. a / x ]. ph ) <-> ( [. ( ( A + 1 ) - 1 ) / x ]. ph /\ [. ( A + 1 ) / x ]. ph ) ) ) | 
						
							| 27 |  | ovex |  |-  ( 1 - 1 ) e. _V | 
						
							| 28 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 29 | 28 | eqeq2i |  |-  ( x = ( 1 - 1 ) <-> x = 0 ) | 
						
							| 30 | 29 4 | sylbi |  |-  ( x = ( 1 - 1 ) -> ( ph <-> ps ) ) | 
						
							| 31 | 27 30 | sbcie |  |-  ( [. ( 1 - 1 ) / x ]. ph <-> ps ) | 
						
							| 32 | 1 31 | mpbir |  |-  [. ( 1 - 1 ) / x ]. ph | 
						
							| 33 |  | 1ex |  |-  1 e. _V | 
						
							| 34 | 33 5 | sbcie |  |-  ( [. 1 / x ]. ph <-> ch ) | 
						
							| 35 | 2 34 | mpbir |  |-  [. 1 / x ]. ph | 
						
							| 36 | 32 35 | pm3.2i |  |-  ( [. ( 1 - 1 ) / x ]. ph /\ [. 1 / x ]. ph ) | 
						
							| 37 |  | simprr |  |-  ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> [. y / x ]. ph ) | 
						
							| 38 |  | nncn |  |-  ( y e. NN -> y e. CC ) | 
						
							| 39 |  | ax-1cn |  |-  1 e. CC | 
						
							| 40 |  | pncan |  |-  ( ( y e. CC /\ 1 e. CC ) -> ( ( y + 1 ) - 1 ) = y ) | 
						
							| 41 | 38 39 40 | sylancl |  |-  ( y e. NN -> ( ( y + 1 ) - 1 ) = y ) | 
						
							| 42 | 41 | adantr |  |-  ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> ( ( y + 1 ) - 1 ) = y ) | 
						
							| 43 | 42 | sbceq1d |  |-  ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> ( [. ( ( y + 1 ) - 1 ) / x ]. ph <-> [. y / x ]. ph ) ) | 
						
							| 44 | 37 43 | mpbird |  |-  ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> [. ( ( y + 1 ) - 1 ) / x ]. ph ) | 
						
							| 45 |  | ovex |  |-  ( y - 1 ) e. _V | 
						
							| 46 | 45 6 | sbcie |  |-  ( [. ( y - 1 ) / x ]. ph <-> th ) | 
						
							| 47 |  | vex |  |-  y e. _V | 
						
							| 48 | 47 7 | sbcie |  |-  ( [. y / x ]. ph <-> ta ) | 
						
							| 49 | 46 48 | anbi12i |  |-  ( ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) <-> ( th /\ ta ) ) | 
						
							| 50 |  | ovex |  |-  ( y + 1 ) e. _V | 
						
							| 51 | 50 8 | sbcie |  |-  ( [. ( y + 1 ) / x ]. ph <-> et ) | 
						
							| 52 | 3 49 51 | 3imtr4g |  |-  ( y e. NN -> ( ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) -> [. ( y + 1 ) / x ]. ph ) ) | 
						
							| 53 | 52 | imp |  |-  ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> [. ( y + 1 ) / x ]. ph ) | 
						
							| 54 | 44 53 | jca |  |-  ( ( y e. NN /\ ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) ) -> ( [. ( ( y + 1 ) - 1 ) / x ]. ph /\ [. ( y + 1 ) / x ]. ph ) ) | 
						
							| 55 | 54 | ex |  |-  ( y e. NN -> ( ( [. ( y - 1 ) / x ]. ph /\ [. y / x ]. ph ) -> ( [. ( ( y + 1 ) - 1 ) / x ]. ph /\ [. ( y + 1 ) / x ]. ph ) ) ) | 
						
							| 56 | 14 18 22 26 36 55 | nnind |  |-  ( ( A + 1 ) e. NN -> ( [. ( ( A + 1 ) - 1 ) / x ]. ph /\ [. ( A + 1 ) / x ]. ph ) ) | 
						
							| 57 | 10 56 | syl |  |-  ( A e. NN0 -> ( [. ( ( A + 1 ) - 1 ) / x ]. ph /\ [. ( A + 1 ) / x ]. ph ) ) | 
						
							| 58 |  | nn0cn |  |-  ( A e. NN0 -> A e. CC ) | 
						
							| 59 |  | pncan |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 60 | 58 39 59 | sylancl |  |-  ( A e. NN0 -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 61 | 60 | sbceq1d |  |-  ( A e. NN0 -> ( [. ( ( A + 1 ) - 1 ) / x ]. ph <-> [. A / x ]. ph ) ) | 
						
							| 62 | 61 | biimpa |  |-  ( ( A e. NN0 /\ [. ( ( A + 1 ) - 1 ) / x ]. ph ) -> [. A / x ]. ph ) | 
						
							| 63 | 62 | adantrr |  |-  ( ( A e. NN0 /\ ( [. ( ( A + 1 ) - 1 ) / x ]. ph /\ [. ( A + 1 ) / x ]. ph ) ) -> [. A / x ]. ph ) | 
						
							| 64 | 57 63 | mpdan |  |-  ( A e. NN0 -> [. A / x ]. ph ) | 
						
							| 65 | 9 | sbcieg |  |-  ( A e. NN0 -> ( [. A / x ]. ph <-> rh ) ) | 
						
							| 66 | 64 65 | mpbid |  |-  ( A e. NN0 -> rh ) |