| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn0ind.1 | ⊢ 𝜓 | 
						
							| 2 |  | 2nn0ind.2 | ⊢ 𝜒 | 
						
							| 3 |  | 2nn0ind.3 | ⊢ ( 𝑦  ∈  ℕ  →  ( ( 𝜃  ∧  𝜏 )  →  𝜂 ) ) | 
						
							| 4 |  | 2nn0ind.4 | ⊢ ( 𝑥  =  0  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 5 |  | 2nn0ind.5 | ⊢ ( 𝑥  =  1  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 6 |  | 2nn0ind.6 | ⊢ ( 𝑥  =  ( 𝑦  −  1 )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 7 |  | 2nn0ind.7 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 8 |  | 2nn0ind.8 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝜑  ↔  𝜂 ) ) | 
						
							| 9 |  | 2nn0ind.9 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜌 ) ) | 
						
							| 10 |  | nn0p1nn | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  +  1 )  ∈  ℕ ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑎  =  1  →  ( 𝑎  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 12 | 11 | sbceq1d | ⊢ ( 𝑎  =  1  →  ( [ ( 𝑎  −  1 )  /  𝑥 ] 𝜑  ↔  [ ( 1  −  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 13 |  | dfsbcq | ⊢ ( 𝑎  =  1  →  ( [ 𝑎  /  𝑥 ] 𝜑  ↔  [ 1  /  𝑥 ] 𝜑 ) ) | 
						
							| 14 | 12 13 | anbi12d | ⊢ ( 𝑎  =  1  →  ( ( [ ( 𝑎  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑎  /  𝑥 ] 𝜑 )  ↔  ( [ ( 1  −  1 )  /  𝑥 ] 𝜑  ∧  [ 1  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑎  =  𝑦  →  ( 𝑎  −  1 )  =  ( 𝑦  −  1 ) ) | 
						
							| 16 | 15 | sbceq1d | ⊢ ( 𝑎  =  𝑦  →  ( [ ( 𝑎  −  1 )  /  𝑥 ] 𝜑  ↔  [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 17 |  | dfsbcq | ⊢ ( 𝑎  =  𝑦  →  ( [ 𝑎  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 18 | 16 17 | anbi12d | ⊢ ( 𝑎  =  𝑦  →  ( ( [ ( 𝑎  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑎  /  𝑥 ] 𝜑 )  ↔  ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑎  =  ( 𝑦  +  1 )  →  ( 𝑎  −  1 )  =  ( ( 𝑦  +  1 )  −  1 ) ) | 
						
							| 20 | 19 | sbceq1d | ⊢ ( 𝑎  =  ( 𝑦  +  1 )  →  ( [ ( 𝑎  −  1 )  /  𝑥 ] 𝜑  ↔  [ ( ( 𝑦  +  1 )  −  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 21 |  | dfsbcq | ⊢ ( 𝑎  =  ( 𝑦  +  1 )  →  ( [ 𝑎  /  𝑥 ] 𝜑  ↔  [ ( 𝑦  +  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 22 | 20 21 | anbi12d | ⊢ ( 𝑎  =  ( 𝑦  +  1 )  →  ( ( [ ( 𝑎  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑎  /  𝑥 ] 𝜑 )  ↔  ( [ ( ( 𝑦  +  1 )  −  1 )  /  𝑥 ] 𝜑  ∧  [ ( 𝑦  +  1 )  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑎  =  ( 𝐴  +  1 )  →  ( 𝑎  −  1 )  =  ( ( 𝐴  +  1 )  −  1 ) ) | 
						
							| 24 | 23 | sbceq1d | ⊢ ( 𝑎  =  ( 𝐴  +  1 )  →  ( [ ( 𝑎  −  1 )  /  𝑥 ] 𝜑  ↔  [ ( ( 𝐴  +  1 )  −  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 25 |  | dfsbcq | ⊢ ( 𝑎  =  ( 𝐴  +  1 )  →  ( [ 𝑎  /  𝑥 ] 𝜑  ↔  [ ( 𝐴  +  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 26 | 24 25 | anbi12d | ⊢ ( 𝑎  =  ( 𝐴  +  1 )  →  ( ( [ ( 𝑎  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑎  /  𝑥 ] 𝜑 )  ↔  ( [ ( ( 𝐴  +  1 )  −  1 )  /  𝑥 ] 𝜑  ∧  [ ( 𝐴  +  1 )  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 27 |  | ovex | ⊢ ( 1  −  1 )  ∈  V | 
						
							| 28 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 29 | 28 | eqeq2i | ⊢ ( 𝑥  =  ( 1  −  1 )  ↔  𝑥  =  0 ) | 
						
							| 30 | 29 4 | sylbi | ⊢ ( 𝑥  =  ( 1  −  1 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 31 | 27 30 | sbcie | ⊢ ( [ ( 1  −  1 )  /  𝑥 ] 𝜑  ↔  𝜓 ) | 
						
							| 32 | 1 31 | mpbir | ⊢ [ ( 1  −  1 )  /  𝑥 ] 𝜑 | 
						
							| 33 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 34 | 33 5 | sbcie | ⊢ ( [ 1  /  𝑥 ] 𝜑  ↔  𝜒 ) | 
						
							| 35 | 2 34 | mpbir | ⊢ [ 1  /  𝑥 ] 𝜑 | 
						
							| 36 | 32 35 | pm3.2i | ⊢ ( [ ( 1  −  1 )  /  𝑥 ] 𝜑  ∧  [ 1  /  𝑥 ] 𝜑 ) | 
						
							| 37 |  | simprr | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  →  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 38 |  | nncn | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ ) | 
						
							| 39 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 40 |  | pncan | ⊢ ( ( 𝑦  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑦  +  1 )  −  1 )  =  𝑦 ) | 
						
							| 41 | 38 39 40 | sylancl | ⊢ ( 𝑦  ∈  ℕ  →  ( ( 𝑦  +  1 )  −  1 )  =  𝑦 ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  →  ( ( 𝑦  +  1 )  −  1 )  =  𝑦 ) | 
						
							| 43 | 42 | sbceq1d | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  →  ( [ ( ( 𝑦  +  1 )  −  1 )  /  𝑥 ] 𝜑  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) ) | 
						
							| 44 | 37 43 | mpbird | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  →  [ ( ( 𝑦  +  1 )  −  1 )  /  𝑥 ] 𝜑 ) | 
						
							| 45 |  | ovex | ⊢ ( 𝑦  −  1 )  ∈  V | 
						
							| 46 | 45 6 | sbcie | ⊢ ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ↔  𝜃 ) | 
						
							| 47 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 48 | 47 7 | sbcie | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜏 ) | 
						
							| 49 | 46 48 | anbi12i | ⊢ ( ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  ↔  ( 𝜃  ∧  𝜏 ) ) | 
						
							| 50 |  | ovex | ⊢ ( 𝑦  +  1 )  ∈  V | 
						
							| 51 | 50 8 | sbcie | ⊢ ( [ ( 𝑦  +  1 )  /  𝑥 ] 𝜑  ↔  𝜂 ) | 
						
							| 52 | 3 49 51 | 3imtr4g | ⊢ ( 𝑦  ∈  ℕ  →  ( ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  [ ( 𝑦  +  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 53 | 52 | imp | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  →  [ ( 𝑦  +  1 )  /  𝑥 ] 𝜑 ) | 
						
							| 54 | 44 53 | jca | ⊢ ( ( 𝑦  ∈  ℕ  ∧  ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 ) )  →  ( [ ( ( 𝑦  +  1 )  −  1 )  /  𝑥 ] 𝜑  ∧  [ ( 𝑦  +  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 55 | 54 | ex | ⊢ ( 𝑦  ∈  ℕ  →  ( ( [ ( 𝑦  −  1 )  /  𝑥 ] 𝜑  ∧  [ 𝑦  /  𝑥 ] 𝜑 )  →  ( [ ( ( 𝑦  +  1 )  −  1 )  /  𝑥 ] 𝜑  ∧  [ ( 𝑦  +  1 )  /  𝑥 ] 𝜑 ) ) ) | 
						
							| 56 | 14 18 22 26 36 55 | nnind | ⊢ ( ( 𝐴  +  1 )  ∈  ℕ  →  ( [ ( ( 𝐴  +  1 )  −  1 )  /  𝑥 ] 𝜑  ∧  [ ( 𝐴  +  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 57 | 10 56 | syl | ⊢ ( 𝐴  ∈  ℕ0  →  ( [ ( ( 𝐴  +  1 )  −  1 )  /  𝑥 ] 𝜑  ∧  [ ( 𝐴  +  1 )  /  𝑥 ] 𝜑 ) ) | 
						
							| 58 |  | nn0cn | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℂ ) | 
						
							| 59 |  | pncan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐴  +  1 )  −  1 )  =  𝐴 ) | 
						
							| 60 | 58 39 59 | sylancl | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( 𝐴  +  1 )  −  1 )  =  𝐴 ) | 
						
							| 61 | 60 | sbceq1d | ⊢ ( 𝐴  ∈  ℕ0  →  ( [ ( ( 𝐴  +  1 )  −  1 )  /  𝑥 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] 𝜑 ) ) | 
						
							| 62 | 61 | biimpa | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  [ ( ( 𝐴  +  1 )  −  1 )  /  𝑥 ] 𝜑 )  →  [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 63 | 62 | adantrr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  ( [ ( ( 𝐴  +  1 )  −  1 )  /  𝑥 ] 𝜑  ∧  [ ( 𝐴  +  1 )  /  𝑥 ] 𝜑 ) )  →  [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 64 | 57 63 | mpdan | ⊢ ( 𝐴  ∈  ℕ0  →  [ 𝐴  /  𝑥 ] 𝜑 ) | 
						
							| 65 | 9 | sbcieg | ⊢ ( 𝐴  ∈  ℕ0  →  ( [ 𝐴  /  𝑥 ] 𝜑  ↔  𝜌 ) ) | 
						
							| 66 | 64 65 | mpbid | ⊢ ( 𝐴  ∈  ℕ0  →  𝜌 ) |