| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zindbi.1 |
⊢ ( 𝑦 ∈ ℤ → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
zindbi.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
zindbi.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜒 ) ) |
| 4 |
|
zindbi.4 |
⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜃 ) ) |
| 5 |
|
zindbi.5 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
| 6 |
|
c0ex |
⊢ 0 ∈ V |
| 7 |
6 4
|
sbcie |
⊢ ( [ 0 / 𝑥 ] 𝜑 ↔ 𝜃 ) |
| 8 |
|
0z |
⊢ 0 ∈ ℤ |
| 9 |
|
eleq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ∈ ℤ ↔ 0 ∈ ℤ ) ) |
| 10 |
|
breq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ≤ 𝑏 ↔ 0 ≤ 𝑏 ) ) |
| 11 |
9 10
|
3anbi13d |
⊢ ( 𝑦 = 0 → ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) ↔ ( 0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) ) ) |
| 12 |
|
dfsbcq |
⊢ ( 𝑦 = 0 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) |
| 13 |
12
|
bibi1d |
⊢ ( 𝑦 = 0 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) |
| 14 |
11 13
|
imbi12d |
⊢ ( 𝑦 = 0 → ( ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ↔ ( ( 0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) ) |
| 15 |
|
eleq1 |
⊢ ( 𝑏 = 𝐴 → ( 𝑏 ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) |
| 16 |
|
breq2 |
⊢ ( 𝑏 = 𝐴 → ( 0 ≤ 𝑏 ↔ 0 ≤ 𝐴 ) ) |
| 17 |
15 16
|
3anbi23d |
⊢ ( 𝑏 = 𝐴 → ( ( 0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) ↔ ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) ) ) |
| 18 |
|
dfsbcq |
⊢ ( 𝑏 = 𝐴 → ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 19 |
18
|
bibi2d |
⊢ ( 𝑏 = 𝐴 → ( ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 20 |
17 19
|
imbi12d |
⊢ ( 𝑏 = 𝐴 → ( ( ( 0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ↔ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) ) |
| 21 |
|
dfsbcq |
⊢ ( 𝑎 = 𝑦 → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 22 |
21
|
bibi2d |
⊢ ( 𝑎 = 𝑦 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 23 |
|
dfsbcq |
⊢ ( 𝑎 = 𝑏 → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) |
| 24 |
23
|
bibi2d |
⊢ ( 𝑎 = 𝑏 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) |
| 25 |
|
dfsbcq |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 26 |
25
|
bibi2d |
⊢ ( 𝑎 = ( 𝑏 + 1 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
| 27 |
|
biidd |
⊢ ( 𝑦 ∈ ℤ → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 28 |
|
vex |
⊢ 𝑦 ∈ V |
| 29 |
28 2
|
sbcie |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 30 |
|
dfsbcq |
⊢ ( 𝑦 = 𝑏 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) |
| 31 |
29 30
|
bitr3id |
⊢ ( 𝑦 = 𝑏 → ( 𝜓 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) |
| 32 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
| 33 |
32 3
|
sbcie |
⊢ ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ 𝜒 ) |
| 34 |
|
oveq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 + 1 ) = ( 𝑏 + 1 ) ) |
| 35 |
34
|
sbceq1d |
⊢ ( 𝑦 = 𝑏 → ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 36 |
33 35
|
bitr3id |
⊢ ( 𝑦 = 𝑏 → ( 𝜒 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 37 |
31 36
|
bibi12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝜓 ↔ 𝜒 ) ↔ ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
| 38 |
37 1
|
vtoclga |
⊢ ( 𝑏 ∈ ℤ → ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 39 |
38
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 40 |
39
|
bibi2d |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
| 41 |
40
|
biimpd |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ ( 𝑏 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
| 42 |
22 24 26 24 27 41
|
uzind |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) |
| 43 |
14 20 42
|
vtocl2g |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 44 |
43
|
3adant3 |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 45 |
44
|
pm2.43i |
⊢ ( ( 0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 46 |
8 45
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 47 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) |
| 48 |
|
breq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ≤ 𝑏 ↔ 𝐴 ≤ 𝑏 ) ) |
| 49 |
47 48
|
3anbi13d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) ↔ ( 𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴 ≤ 𝑏 ) ) ) |
| 50 |
|
dfsbcq |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 51 |
50
|
bibi1d |
⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) |
| 52 |
49 51
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦 ≤ 𝑏 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴 ≤ 𝑏 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ) ) |
| 53 |
|
eleq1 |
⊢ ( 𝑏 = 0 → ( 𝑏 ∈ ℤ ↔ 0 ∈ ℤ ) ) |
| 54 |
|
breq2 |
⊢ ( 𝑏 = 0 → ( 𝐴 ≤ 𝑏 ↔ 𝐴 ≤ 0 ) ) |
| 55 |
53 54
|
3anbi23d |
⊢ ( 𝑏 = 0 → ( ( 𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴 ≤ 𝑏 ) ↔ ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) ) ) |
| 56 |
|
dfsbcq |
⊢ ( 𝑏 = 0 → ( [ 𝑏 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) |
| 57 |
56
|
bibi2d |
⊢ ( 𝑏 = 0 → ( ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) ) |
| 58 |
55 57
|
imbi12d |
⊢ ( 𝑏 = 0 → ( ( ( 𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴 ≤ 𝑏 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 𝑏 / 𝑥 ] 𝜑 ) ) ↔ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) ) ) |
| 59 |
52 58 42
|
vtocl2g |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) ) |
| 60 |
59
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) ) |
| 61 |
60
|
pm2.43i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) |
| 62 |
8 61
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ [ 0 / 𝑥 ] 𝜑 ) ) |
| 63 |
62
|
bicomd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≤ 0 ) → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 64 |
|
0re |
⊢ 0 ∈ ℝ |
| 65 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 66 |
|
letric |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ∨ 𝐴 ≤ 0 ) ) |
| 67 |
64 65 66
|
sylancr |
⊢ ( 𝐴 ∈ ℤ → ( 0 ≤ 𝐴 ∨ 𝐴 ≤ 0 ) ) |
| 68 |
46 63 67
|
mpjaodan |
⊢ ( 𝐴 ∈ ℤ → ( [ 0 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 69 |
7 68
|
bitr3id |
⊢ ( 𝐴 ∈ ℤ → ( 𝜃 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 70 |
5
|
sbcieg |
⊢ ( 𝐴 ∈ ℤ → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜏 ) ) |
| 71 |
69 70
|
bitrd |
⊢ ( 𝐴 ∈ ℤ → ( 𝜃 ↔ 𝜏 ) ) |