Metamath Proof Explorer


Theorem 2nn0ind

Description: Induction on nonnegative integers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Hypotheses 2nn0ind.1 ψ
2nn0ind.2 χ
2nn0ind.3 y θ τ η
2nn0ind.4 x = 0 φ ψ
2nn0ind.5 x = 1 φ χ
2nn0ind.6 x = y 1 φ θ
2nn0ind.7 x = y φ τ
2nn0ind.8 x = y + 1 φ η
2nn0ind.9 x = A φ ρ
Assertion 2nn0ind A 0 ρ

Proof

Step Hyp Ref Expression
1 2nn0ind.1 ψ
2 2nn0ind.2 χ
3 2nn0ind.3 y θ τ η
4 2nn0ind.4 x = 0 φ ψ
5 2nn0ind.5 x = 1 φ χ
6 2nn0ind.6 x = y 1 φ θ
7 2nn0ind.7 x = y φ τ
8 2nn0ind.8 x = y + 1 φ η
9 2nn0ind.9 x = A φ ρ
10 nn0p1nn A 0 A + 1
11 oveq1 a = 1 a 1 = 1 1
12 11 sbceq1d a = 1 [˙a 1 / x]˙ φ [˙ 1 1 / x]˙ φ
13 dfsbcq a = 1 [˙a / x]˙ φ [˙ 1 / x]˙ φ
14 12 13 anbi12d a = 1 [˙a 1 / x]˙ φ [˙a / x]˙ φ [˙ 1 1 / x]˙ φ [˙ 1 / x]˙ φ
15 oveq1 a = y a 1 = y 1
16 15 sbceq1d a = y [˙a 1 / x]˙ φ [˙y 1 / x]˙ φ
17 dfsbcq a = y [˙a / x]˙ φ [˙y / x]˙ φ
18 16 17 anbi12d a = y [˙a 1 / x]˙ φ [˙a / x]˙ φ [˙y 1 / x]˙ φ [˙y / x]˙ φ
19 oveq1 a = y + 1 a 1 = y + 1 - 1
20 19 sbceq1d a = y + 1 [˙a 1 / x]˙ φ [˙y + 1 - 1 / x]˙ φ
21 dfsbcq a = y + 1 [˙a / x]˙ φ [˙y + 1 / x]˙ φ
22 20 21 anbi12d a = y + 1 [˙a 1 / x]˙ φ [˙a / x]˙ φ [˙y + 1 - 1 / x]˙ φ [˙y + 1 / x]˙ φ
23 oveq1 a = A + 1 a 1 = A + 1 - 1
24 23 sbceq1d a = A + 1 [˙a 1 / x]˙ φ [˙A + 1 - 1 / x]˙ φ
25 dfsbcq a = A + 1 [˙a / x]˙ φ [˙A + 1 / x]˙ φ
26 24 25 anbi12d a = A + 1 [˙a 1 / x]˙ φ [˙a / x]˙ φ [˙A + 1 - 1 / x]˙ φ [˙A + 1 / x]˙ φ
27 ovex 1 1 V
28 1m1e0 1 1 = 0
29 28 eqeq2i x = 1 1 x = 0
30 29 4 sylbi x = 1 1 φ ψ
31 27 30 sbcie [˙ 1 1 / x]˙ φ ψ
32 1 31 mpbir [˙ 1 1 / x]˙ φ
33 1ex 1 V
34 33 5 sbcie [˙ 1 / x]˙ φ χ
35 2 34 mpbir [˙ 1 / x]˙ φ
36 32 35 pm3.2i [˙ 1 1 / x]˙ φ [˙ 1 / x]˙ φ
37 simprr y [˙y 1 / x]˙ φ [˙y / x]˙ φ [˙y / x]˙ φ
38 nncn y y
39 ax-1cn 1
40 pncan y 1 y + 1 - 1 = y
41 38 39 40 sylancl y y + 1 - 1 = y
42 41 adantr y [˙y 1 / x]˙ φ [˙y / x]˙ φ y + 1 - 1 = y
43 42 sbceq1d y [˙y 1 / x]˙ φ [˙y / x]˙ φ [˙y + 1 - 1 / x]˙ φ [˙y / x]˙ φ
44 37 43 mpbird y [˙y 1 / x]˙ φ [˙y / x]˙ φ [˙y + 1 - 1 / x]˙ φ
45 ovex y 1 V
46 45 6 sbcie [˙y 1 / x]˙ φ θ
47 vex y V
48 47 7 sbcie [˙y / x]˙ φ τ
49 46 48 anbi12i [˙y 1 / x]˙ φ [˙y / x]˙ φ θ τ
50 ovex y + 1 V
51 50 8 sbcie [˙y + 1 / x]˙ φ η
52 3 49 51 3imtr4g y [˙y 1 / x]˙ φ [˙y / x]˙ φ [˙y + 1 / x]˙ φ
53 52 imp y [˙y 1 / x]˙ φ [˙y / x]˙ φ [˙y + 1 / x]˙ φ
54 44 53 jca y [˙y 1 / x]˙ φ [˙y / x]˙ φ [˙y + 1 - 1 / x]˙ φ [˙y + 1 / x]˙ φ
55 54 ex y [˙y 1 / x]˙ φ [˙y / x]˙ φ [˙y + 1 - 1 / x]˙ φ [˙y + 1 / x]˙ φ
56 14 18 22 26 36 55 nnind A + 1 [˙A + 1 - 1 / x]˙ φ [˙A + 1 / x]˙ φ
57 10 56 syl A 0 [˙A + 1 - 1 / x]˙ φ [˙A + 1 / x]˙ φ
58 nn0cn A 0 A
59 pncan A 1 A + 1 - 1 = A
60 58 39 59 sylancl A 0 A + 1 - 1 = A
61 60 sbceq1d A 0 [˙A + 1 - 1 / x]˙ φ [˙A / x]˙ φ
62 61 biimpa A 0 [˙A + 1 - 1 / x]˙ φ [˙A / x]˙ φ
63 62 adantrr A 0 [˙A + 1 - 1 / x]˙ φ [˙A + 1 / x]˙ φ [˙A / x]˙ φ
64 57 63 mpdan A 0 [˙A / x]˙ φ
65 9 sbcieg A 0 [˙A / x]˙ φ ρ
66 64 65 mpbid A 0 ρ