| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oddcomabszz.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | oddcomabszz.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℤ  ∧  0  ≤  𝑥 )  →  0  ≤  𝐴 ) | 
						
							| 3 |  | oddcomabszz.3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℤ )  →  𝐶  =  - 𝐵 ) | 
						
							| 4 |  | oddcomabszz.4 | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  𝐵 ) | 
						
							| 5 |  | oddcomabszz.5 | ⊢ ( 𝑥  =  - 𝑦  →  𝐴  =  𝐶 ) | 
						
							| 6 |  | oddcomabszz.6 | ⊢ ( 𝑥  =  𝐷  →  𝐴  =  𝐸 ) | 
						
							| 7 |  | oddcomabszz.7 | ⊢ ( 𝑥  =  ( abs ‘ 𝐷 )  →  𝐴  =  𝐹 ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑎  =  𝐷  →  ( 𝑎  ∈  ℤ  ↔  𝐷  ∈  ℤ ) ) | 
						
							| 9 | 8 | anbi2d | ⊢ ( 𝑎  =  𝐷  →  ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ↔  ( 𝜑  ∧  𝐷  ∈  ℤ ) ) ) | 
						
							| 10 |  | csbeq1 | ⊢ ( 𝑎  =  𝐷  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐴  =  ⦋ 𝐷  /  𝑥 ⦌ 𝐴 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑎  =  𝐷  →  ( abs ‘ ⦋ 𝑎  /  𝑥 ⦌ 𝐴 )  =  ( abs ‘ ⦋ 𝐷  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑎  =  𝐷  →  ( abs ‘ 𝑎 )  =  ( abs ‘ 𝐷 ) ) | 
						
							| 13 | 12 | csbeq1d | ⊢ ( 𝑎  =  𝐷  →  ⦋ ( abs ‘ 𝑎 )  /  𝑥 ⦌ 𝐴  =  ⦋ ( abs ‘ 𝐷 )  /  𝑥 ⦌ 𝐴 ) | 
						
							| 14 | 11 13 | eqeq12d | ⊢ ( 𝑎  =  𝐷  →  ( ( abs ‘ ⦋ 𝑎  /  𝑥 ⦌ 𝐴 )  =  ⦋ ( abs ‘ 𝑎 )  /  𝑥 ⦌ 𝐴  ↔  ( abs ‘ ⦋ 𝐷  /  𝑥 ⦌ 𝐴 )  =  ⦋ ( abs ‘ 𝐷 )  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 15 | 9 14 | imbi12d | ⊢ ( 𝑎  =  𝐷  →  ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( abs ‘ ⦋ 𝑎  /  𝑥 ⦌ 𝐴 )  =  ⦋ ( abs ‘ 𝑎 )  /  𝑥 ⦌ 𝐴 )  ↔  ( ( 𝜑  ∧  𝐷  ∈  ℤ )  →  ( abs ‘ ⦋ 𝐷  /  𝑥 ⦌ 𝐴 )  =  ⦋ ( abs ‘ 𝐷 )  /  𝑥 ⦌ 𝐴 ) ) ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑎  ∈  ℤ ) | 
						
							| 17 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐴 | 
						
							| 18 | 17 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ∈  ℝ | 
						
							| 19 | 16 18 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 20 |  | eleq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥  ∈  ℤ  ↔  𝑎  ∈  ℤ ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝜑  ∧  𝑥  ∈  ℤ )  ↔  ( 𝜑  ∧  𝑎  ∈  ℤ ) ) ) | 
						
							| 22 |  | csbeq1a | ⊢ ( 𝑥  =  𝑎  →  𝐴  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( 𝑥  =  𝑎  →  ( 𝐴  ∈  ℝ  ↔  ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ∈  ℝ ) ) | 
						
							| 24 | 21 23 | imbi12d | ⊢ ( 𝑥  =  𝑎  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℤ )  →  𝐴  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ∈  ℝ ) ) ) | 
						
							| 25 | 19 24 1 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  0  ≤  𝑎 )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 27 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑎  ∈  ℤ  ∧  0  ≤  𝑎 ) | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑥 0 | 
						
							| 29 |  | nfcv | ⊢ Ⅎ 𝑥  ≤ | 
						
							| 30 | 28 29 17 | nfbr | ⊢ Ⅎ 𝑥 0  ≤  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 | 
						
							| 31 | 27 30 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑎  ∈  ℤ  ∧  0  ≤  𝑎 )  →  0  ≤  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 32 |  | breq2 | ⊢ ( 𝑥  =  𝑎  →  ( 0  ≤  𝑥  ↔  0  ≤  𝑎 ) ) | 
						
							| 33 | 20 32 | 3anbi23d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝜑  ∧  𝑥  ∈  ℤ  ∧  0  ≤  𝑥 )  ↔  ( 𝜑  ∧  𝑎  ∈  ℤ  ∧  0  ≤  𝑎 ) ) ) | 
						
							| 34 | 22 | breq2d | ⊢ ( 𝑥  =  𝑎  →  ( 0  ≤  𝐴  ↔  0  ≤  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 35 | 33 34 | imbi12d | ⊢ ( 𝑥  =  𝑎  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℤ  ∧  0  ≤  𝑥 )  →  0  ≤  𝐴 )  ↔  ( ( 𝜑  ∧  𝑎  ∈  ℤ  ∧  0  ≤  𝑎 )  →  0  ≤  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) ) ) | 
						
							| 36 | 31 35 2 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ  ∧  0  ≤  𝑎 )  →  0  ≤  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 37 | 36 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  0  ≤  𝑎 )  →  0  ≤  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 38 | 26 37 | absidd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  0  ≤  𝑎 )  →  ( abs ‘ ⦋ 𝑎  /  𝑥 ⦌ 𝐴 )  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 39 |  | zre | ⊢ ( 𝑎  ∈  ℤ  →  𝑎  ∈  ℝ ) | 
						
							| 40 | 39 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  0  ≤  𝑎 )  →  𝑎  ∈  ℝ ) | 
						
							| 41 |  | absid | ⊢ ( ( 𝑎  ∈  ℝ  ∧  0  ≤  𝑎 )  →  ( abs ‘ 𝑎 )  =  𝑎 ) | 
						
							| 42 | 40 41 | sylancom | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  0  ≤  𝑎 )  →  ( abs ‘ 𝑎 )  =  𝑎 ) | 
						
							| 43 | 42 | csbeq1d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  0  ≤  𝑎 )  →  ⦋ ( abs ‘ 𝑎 )  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 44 | 38 43 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  0  ≤  𝑎 )  →  ( abs ‘ ⦋ 𝑎  /  𝑥 ⦌ 𝐴 )  =  ⦋ ( abs ‘ 𝑎 )  /  𝑥 ⦌ 𝐴 ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑦 ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴  =  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 46 |  | eleq1 | ⊢ ( 𝑦  =  𝑎  →  ( 𝑦  ∈  ℤ  ↔  𝑎  ∈  ℤ ) ) | 
						
							| 47 | 46 | anbi2d | ⊢ ( 𝑦  =  𝑎  →  ( ( 𝜑  ∧  𝑦  ∈  ℤ )  ↔  ( 𝜑  ∧  𝑎  ∈  ℤ ) ) ) | 
						
							| 48 |  | negex | ⊢ - 𝑦  ∈  V | 
						
							| 49 | 48 5 | csbie | ⊢ ⦋ - 𝑦  /  𝑥 ⦌ 𝐴  =  𝐶 | 
						
							| 50 |  | negeq | ⊢ ( 𝑦  =  𝑎  →  - 𝑦  =  - 𝑎 ) | 
						
							| 51 | 50 | csbeq1d | ⊢ ( 𝑦  =  𝑎  →  ⦋ - 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 52 | 49 51 | eqtr3id | ⊢ ( 𝑦  =  𝑎  →  𝐶  =  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 53 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 54 | 53 4 | csbie | ⊢ ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  𝐵 | 
						
							| 55 |  | csbeq1 | ⊢ ( 𝑦  =  𝑎  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 56 | 54 55 | eqtr3id | ⊢ ( 𝑦  =  𝑎  →  𝐵  =  ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 57 | 56 | negeqd | ⊢ ( 𝑦  =  𝑎  →  - 𝐵  =  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 58 | 52 57 | eqeq12d | ⊢ ( 𝑦  =  𝑎  →  ( 𝐶  =  - 𝐵  ↔  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴  =  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 59 | 47 58 | imbi12d | ⊢ ( 𝑦  =  𝑎  →  ( ( ( 𝜑  ∧  𝑦  ∈  ℤ )  →  𝐶  =  - 𝐵 )  ↔  ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴  =  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) ) ) | 
						
							| 60 | 45 59 3 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴  =  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≤  0 )  →  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴  =  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 62 | 39 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≤  0 )  →  𝑎  ∈  ℝ ) | 
						
							| 63 |  | absnid | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑎  ≤  0 )  →  ( abs ‘ 𝑎 )  =  - 𝑎 ) | 
						
							| 64 | 62 63 | sylancom | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≤  0 )  →  ( abs ‘ 𝑎 )  =  - 𝑎 ) | 
						
							| 65 | 64 | csbeq1d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≤  0 )  →  ⦋ ( abs ‘ 𝑎 )  /  𝑥 ⦌ 𝐴  =  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 66 | 25 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≤  0 )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ∈  ℝ ) | 
						
							| 67 |  | znegcl | ⊢ ( 𝑎  ∈  ℤ  →  - 𝑎  ∈  ℤ ) | 
						
							| 68 |  | nfv | ⊢ Ⅎ 𝑥 ( 𝜑  ∧  - 𝑎  ∈  ℤ  ∧  0  ≤  - 𝑎 ) | 
						
							| 69 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 | 
						
							| 70 | 28 29 69 | nfbr | ⊢ Ⅎ 𝑥 0  ≤  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 | 
						
							| 71 | 68 70 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  - 𝑎  ∈  ℤ  ∧  0  ≤  - 𝑎 )  →  0  ≤  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 72 |  | negex | ⊢ - 𝑎  ∈  V | 
						
							| 73 |  | eleq1 | ⊢ ( 𝑥  =  - 𝑎  →  ( 𝑥  ∈  ℤ  ↔  - 𝑎  ∈  ℤ ) ) | 
						
							| 74 |  | breq2 | ⊢ ( 𝑥  =  - 𝑎  →  ( 0  ≤  𝑥  ↔  0  ≤  - 𝑎 ) ) | 
						
							| 75 | 73 74 | 3anbi23d | ⊢ ( 𝑥  =  - 𝑎  →  ( ( 𝜑  ∧  𝑥  ∈  ℤ  ∧  0  ≤  𝑥 )  ↔  ( 𝜑  ∧  - 𝑎  ∈  ℤ  ∧  0  ≤  - 𝑎 ) ) ) | 
						
							| 76 |  | csbeq1a | ⊢ ( 𝑥  =  - 𝑎  →  𝐴  =  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 77 | 76 | breq2d | ⊢ ( 𝑥  =  - 𝑎  →  ( 0  ≤  𝐴  ↔  0  ≤  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 78 | 75 77 | imbi12d | ⊢ ( 𝑥  =  - 𝑎  →  ( ( ( 𝜑  ∧  𝑥  ∈  ℤ  ∧  0  ≤  𝑥 )  →  0  ≤  𝐴 )  ↔  ( ( 𝜑  ∧  - 𝑎  ∈  ℤ  ∧  0  ≤  - 𝑎 )  →  0  ≤  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) ) ) | 
						
							| 79 | 71 72 78 2 | vtoclf | ⊢ ( ( 𝜑  ∧  - 𝑎  ∈  ℤ  ∧  0  ≤  - 𝑎 )  →  0  ≤  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 80 | 79 | 3expia | ⊢ ( ( 𝜑  ∧  - 𝑎  ∈  ℤ )  →  ( 0  ≤  - 𝑎  →  0  ≤  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 81 | 67 80 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 0  ≤  - 𝑎  →  0  ≤  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 82 | 60 | breq2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 0  ≤  ⦋ - 𝑎  /  𝑥 ⦌ 𝐴  ↔  0  ≤  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 83 | 81 82 | sylibd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 0  ≤  - 𝑎  →  0  ≤  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 84 | 39 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  𝑎  ∈  ℝ ) | 
						
							| 85 | 84 | le0neg1d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 𝑎  ≤  0  ↔  0  ≤  - 𝑎 ) ) | 
						
							| 86 | 25 | le0neg1d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ≤  0  ↔  0  ≤  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 87 | 83 85 86 | 3imtr4d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 𝑎  ≤  0  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ≤  0 ) ) | 
						
							| 88 | 87 | imp | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≤  0 )  →  ⦋ 𝑎  /  𝑥 ⦌ 𝐴  ≤  0 ) | 
						
							| 89 | 66 88 | absnidd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≤  0 )  →  ( abs ‘ ⦋ 𝑎  /  𝑥 ⦌ 𝐴 )  =  - ⦋ 𝑎  /  𝑥 ⦌ 𝐴 ) | 
						
							| 90 | 61 65 89 | 3eqtr4rd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℤ )  ∧  𝑎  ≤  0 )  →  ( abs ‘ ⦋ 𝑎  /  𝑥 ⦌ 𝐴 )  =  ⦋ ( abs ‘ 𝑎 )  /  𝑥 ⦌ 𝐴 ) | 
						
							| 91 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 92 |  | letric | ⊢ ( ( 0  ∈  ℝ  ∧  𝑎  ∈  ℝ )  →  ( 0  ≤  𝑎  ∨  𝑎  ≤  0 ) ) | 
						
							| 93 | 91 39 92 | sylancr | ⊢ ( 𝑎  ∈  ℤ  →  ( 0  ≤  𝑎  ∨  𝑎  ≤  0 ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( 0  ≤  𝑎  ∨  𝑎  ≤  0 ) ) | 
						
							| 95 | 44 90 94 | mpjaodan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℤ )  →  ( abs ‘ ⦋ 𝑎  /  𝑥 ⦌ 𝐴 )  =  ⦋ ( abs ‘ 𝑎 )  /  𝑥 ⦌ 𝐴 ) | 
						
							| 96 | 15 95 | vtoclg | ⊢ ( 𝐷  ∈  ℤ  →  ( ( 𝜑  ∧  𝐷  ∈  ℤ )  →  ( abs ‘ ⦋ 𝐷  /  𝑥 ⦌ 𝐴 )  =  ⦋ ( abs ‘ 𝐷 )  /  𝑥 ⦌ 𝐴 ) ) | 
						
							| 97 | 96 | anabsi7 | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ℤ )  →  ( abs ‘ ⦋ 𝐷  /  𝑥 ⦌ 𝐴 )  =  ⦋ ( abs ‘ 𝐷 )  /  𝑥 ⦌ 𝐴 ) | 
						
							| 98 |  | nfcvd | ⊢ ( 𝐷  ∈  ℤ  →  Ⅎ 𝑥 𝐸 ) | 
						
							| 99 | 98 6 | csbiegf | ⊢ ( 𝐷  ∈  ℤ  →  ⦋ 𝐷  /  𝑥 ⦌ 𝐴  =  𝐸 ) | 
						
							| 100 | 99 | fveq2d | ⊢ ( 𝐷  ∈  ℤ  →  ( abs ‘ ⦋ 𝐷  /  𝑥 ⦌ 𝐴 )  =  ( abs ‘ 𝐸 ) ) | 
						
							| 101 | 100 | adantl | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ℤ )  →  ( abs ‘ ⦋ 𝐷  /  𝑥 ⦌ 𝐴 )  =  ( abs ‘ 𝐸 ) ) | 
						
							| 102 |  | fvex | ⊢ ( abs ‘ 𝐷 )  ∈  V | 
						
							| 103 | 102 7 | csbie | ⊢ ⦋ ( abs ‘ 𝐷 )  /  𝑥 ⦌ 𝐴  =  𝐹 | 
						
							| 104 | 103 | a1i | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ℤ )  →  ⦋ ( abs ‘ 𝐷 )  /  𝑥 ⦌ 𝐴  =  𝐹 ) | 
						
							| 105 | 97 101 104 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝐷  ∈  ℤ )  →  ( abs ‘ 𝐸 )  =  𝐹 ) |