Metamath Proof Explorer


Theorem oddcomabszz

Description: An odd function which takes nonnegative values on nonnegative arguments commutes with abs . (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Hypotheses oddcomabszz.1 ( ( 𝜑𝑥 ∈ ℤ ) → 𝐴 ∈ ℝ )
oddcomabszz.2 ( ( 𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) → 0 ≤ 𝐴 )
oddcomabszz.3 ( ( 𝜑𝑦 ∈ ℤ ) → 𝐶 = - 𝐵 )
oddcomabszz.4 ( 𝑥 = 𝑦𝐴 = 𝐵 )
oddcomabszz.5 ( 𝑥 = - 𝑦𝐴 = 𝐶 )
oddcomabszz.6 ( 𝑥 = 𝐷𝐴 = 𝐸 )
oddcomabszz.7 ( 𝑥 = ( abs ‘ 𝐷 ) → 𝐴 = 𝐹 )
Assertion oddcomabszz ( ( 𝜑𝐷 ∈ ℤ ) → ( abs ‘ 𝐸 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 oddcomabszz.1 ( ( 𝜑𝑥 ∈ ℤ ) → 𝐴 ∈ ℝ )
2 oddcomabszz.2 ( ( 𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) → 0 ≤ 𝐴 )
3 oddcomabszz.3 ( ( 𝜑𝑦 ∈ ℤ ) → 𝐶 = - 𝐵 )
4 oddcomabszz.4 ( 𝑥 = 𝑦𝐴 = 𝐵 )
5 oddcomabszz.5 ( 𝑥 = - 𝑦𝐴 = 𝐶 )
6 oddcomabszz.6 ( 𝑥 = 𝐷𝐴 = 𝐸 )
7 oddcomabszz.7 ( 𝑥 = ( abs ‘ 𝐷 ) → 𝐴 = 𝐹 )
8 eleq1 ( 𝑎 = 𝐷 → ( 𝑎 ∈ ℤ ↔ 𝐷 ∈ ℤ ) )
9 8 anbi2d ( 𝑎 = 𝐷 → ( ( 𝜑𝑎 ∈ ℤ ) ↔ ( 𝜑𝐷 ∈ ℤ ) ) )
10 csbeq1 ( 𝑎 = 𝐷 𝑎 / 𝑥 𝐴 = 𝐷 / 𝑥 𝐴 )
11 10 fveq2d ( 𝑎 = 𝐷 → ( abs ‘ 𝑎 / 𝑥 𝐴 ) = ( abs ‘ 𝐷 / 𝑥 𝐴 ) )
12 fveq2 ( 𝑎 = 𝐷 → ( abs ‘ 𝑎 ) = ( abs ‘ 𝐷 ) )
13 12 csbeq1d ( 𝑎 = 𝐷 ( abs ‘ 𝑎 ) / 𝑥 𝐴 = ( abs ‘ 𝐷 ) / 𝑥 𝐴 )
14 11 13 eqeq12d ( 𝑎 = 𝐷 → ( ( abs ‘ 𝑎 / 𝑥 𝐴 ) = ( abs ‘ 𝑎 ) / 𝑥 𝐴 ↔ ( abs ‘ 𝐷 / 𝑥 𝐴 ) = ( abs ‘ 𝐷 ) / 𝑥 𝐴 ) )
15 9 14 imbi12d ( 𝑎 = 𝐷 → ( ( ( 𝜑𝑎 ∈ ℤ ) → ( abs ‘ 𝑎 / 𝑥 𝐴 ) = ( abs ‘ 𝑎 ) / 𝑥 𝐴 ) ↔ ( ( 𝜑𝐷 ∈ ℤ ) → ( abs ‘ 𝐷 / 𝑥 𝐴 ) = ( abs ‘ 𝐷 ) / 𝑥 𝐴 ) ) )
16 nfv 𝑥 ( 𝜑𝑎 ∈ ℤ )
17 nfcsb1v 𝑥 𝑎 / 𝑥 𝐴
18 17 nfel1 𝑥 𝑎 / 𝑥 𝐴 ∈ ℝ
19 16 18 nfim 𝑥 ( ( 𝜑𝑎 ∈ ℤ ) → 𝑎 / 𝑥 𝐴 ∈ ℝ )
20 eleq1 ( 𝑥 = 𝑎 → ( 𝑥 ∈ ℤ ↔ 𝑎 ∈ ℤ ) )
21 20 anbi2d ( 𝑥 = 𝑎 → ( ( 𝜑𝑥 ∈ ℤ ) ↔ ( 𝜑𝑎 ∈ ℤ ) ) )
22 csbeq1a ( 𝑥 = 𝑎𝐴 = 𝑎 / 𝑥 𝐴 )
23 22 eleq1d ( 𝑥 = 𝑎 → ( 𝐴 ∈ ℝ ↔ 𝑎 / 𝑥 𝐴 ∈ ℝ ) )
24 21 23 imbi12d ( 𝑥 = 𝑎 → ( ( ( 𝜑𝑥 ∈ ℤ ) → 𝐴 ∈ ℝ ) ↔ ( ( 𝜑𝑎 ∈ ℤ ) → 𝑎 / 𝑥 𝐴 ∈ ℝ ) ) )
25 19 24 1 chvarfv ( ( 𝜑𝑎 ∈ ℤ ) → 𝑎 / 𝑥 𝐴 ∈ ℝ )
26 25 adantr ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → 𝑎 / 𝑥 𝐴 ∈ ℝ )
27 nfv 𝑥 ( 𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 )
28 nfcv 𝑥 0
29 nfcv 𝑥
30 28 29 17 nfbr 𝑥 0 ≤ 𝑎 / 𝑥 𝐴
31 27 30 nfim 𝑥 ( ( 𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) → 0 ≤ 𝑎 / 𝑥 𝐴 )
32 breq2 ( 𝑥 = 𝑎 → ( 0 ≤ 𝑥 ↔ 0 ≤ 𝑎 ) )
33 20 32 3anbi23d ( 𝑥 = 𝑎 → ( ( 𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ↔ ( 𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) ) )
34 22 breq2d ( 𝑥 = 𝑎 → ( 0 ≤ 𝐴 ↔ 0 ≤ 𝑎 / 𝑥 𝐴 ) )
35 33 34 imbi12d ( 𝑥 = 𝑎 → ( ( ( 𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) → 0 ≤ 𝐴 ) ↔ ( ( 𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) → 0 ≤ 𝑎 / 𝑥 𝐴 ) ) )
36 31 35 2 chvarfv ( ( 𝜑𝑎 ∈ ℤ ∧ 0 ≤ 𝑎 ) → 0 ≤ 𝑎 / 𝑥 𝐴 )
37 36 3expa ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → 0 ≤ 𝑎 / 𝑥 𝐴 )
38 26 37 absidd ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → ( abs ‘ 𝑎 / 𝑥 𝐴 ) = 𝑎 / 𝑥 𝐴 )
39 zre ( 𝑎 ∈ ℤ → 𝑎 ∈ ℝ )
40 39 ad2antlr ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → 𝑎 ∈ ℝ )
41 absid ( ( 𝑎 ∈ ℝ ∧ 0 ≤ 𝑎 ) → ( abs ‘ 𝑎 ) = 𝑎 )
42 40 41 sylancom ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → ( abs ‘ 𝑎 ) = 𝑎 )
43 42 csbeq1d ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → ( abs ‘ 𝑎 ) / 𝑥 𝐴 = 𝑎 / 𝑥 𝐴 )
44 38 43 eqtr4d ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 0 ≤ 𝑎 ) → ( abs ‘ 𝑎 / 𝑥 𝐴 ) = ( abs ‘ 𝑎 ) / 𝑥 𝐴 )
45 nfv 𝑦 ( ( 𝜑𝑎 ∈ ℤ ) → - 𝑎 / 𝑥 𝐴 = - 𝑎 / 𝑥 𝐴 )
46 eleq1 ( 𝑦 = 𝑎 → ( 𝑦 ∈ ℤ ↔ 𝑎 ∈ ℤ ) )
47 46 anbi2d ( 𝑦 = 𝑎 → ( ( 𝜑𝑦 ∈ ℤ ) ↔ ( 𝜑𝑎 ∈ ℤ ) ) )
48 negex - 𝑦 ∈ V
49 48 5 csbie - 𝑦 / 𝑥 𝐴 = 𝐶
50 negeq ( 𝑦 = 𝑎 → - 𝑦 = - 𝑎 )
51 50 csbeq1d ( 𝑦 = 𝑎 - 𝑦 / 𝑥 𝐴 = - 𝑎 / 𝑥 𝐴 )
52 49 51 syl5eqr ( 𝑦 = 𝑎𝐶 = - 𝑎 / 𝑥 𝐴 )
53 vex 𝑦 ∈ V
54 53 4 csbie 𝑦 / 𝑥 𝐴 = 𝐵
55 csbeq1 ( 𝑦 = 𝑎 𝑦 / 𝑥 𝐴 = 𝑎 / 𝑥 𝐴 )
56 54 55 syl5eqr ( 𝑦 = 𝑎𝐵 = 𝑎 / 𝑥 𝐴 )
57 56 negeqd ( 𝑦 = 𝑎 → - 𝐵 = - 𝑎 / 𝑥 𝐴 )
58 52 57 eqeq12d ( 𝑦 = 𝑎 → ( 𝐶 = - 𝐵 - 𝑎 / 𝑥 𝐴 = - 𝑎 / 𝑥 𝐴 ) )
59 47 58 imbi12d ( 𝑦 = 𝑎 → ( ( ( 𝜑𝑦 ∈ ℤ ) → 𝐶 = - 𝐵 ) ↔ ( ( 𝜑𝑎 ∈ ℤ ) → - 𝑎 / 𝑥 𝐴 = - 𝑎 / 𝑥 𝐴 ) ) )
60 45 59 3 chvarfv ( ( 𝜑𝑎 ∈ ℤ ) → - 𝑎 / 𝑥 𝐴 = - 𝑎 / 𝑥 𝐴 )
61 60 adantr ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → - 𝑎 / 𝑥 𝐴 = - 𝑎 / 𝑥 𝐴 )
62 39 ad2antlr ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → 𝑎 ∈ ℝ )
63 absnid ( ( 𝑎 ∈ ℝ ∧ 𝑎 ≤ 0 ) → ( abs ‘ 𝑎 ) = - 𝑎 )
64 62 63 sylancom ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ( abs ‘ 𝑎 ) = - 𝑎 )
65 64 csbeq1d ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ( abs ‘ 𝑎 ) / 𝑥 𝐴 = - 𝑎 / 𝑥 𝐴 )
66 25 adantr ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → 𝑎 / 𝑥 𝐴 ∈ ℝ )
67 znegcl ( 𝑎 ∈ ℤ → - 𝑎 ∈ ℤ )
68 nfv 𝑥 ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 )
69 nfcsb1v 𝑥 - 𝑎 / 𝑥 𝐴
70 28 29 69 nfbr 𝑥 0 ≤ - 𝑎 / 𝑥 𝐴
71 68 70 nfim 𝑥 ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 ) → 0 ≤ - 𝑎 / 𝑥 𝐴 )
72 negex - 𝑎 ∈ V
73 eleq1 ( 𝑥 = - 𝑎 → ( 𝑥 ∈ ℤ ↔ - 𝑎 ∈ ℤ ) )
74 breq2 ( 𝑥 = - 𝑎 → ( 0 ≤ 𝑥 ↔ 0 ≤ - 𝑎 ) )
75 73 74 3anbi23d ( 𝑥 = - 𝑎 → ( ( 𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) ↔ ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 ) ) )
76 csbeq1a ( 𝑥 = - 𝑎𝐴 = - 𝑎 / 𝑥 𝐴 )
77 76 breq2d ( 𝑥 = - 𝑎 → ( 0 ≤ 𝐴 ↔ 0 ≤ - 𝑎 / 𝑥 𝐴 ) )
78 75 77 imbi12d ( 𝑥 = - 𝑎 → ( ( ( 𝜑𝑥 ∈ ℤ ∧ 0 ≤ 𝑥 ) → 0 ≤ 𝐴 ) ↔ ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 ) → 0 ≤ - 𝑎 / 𝑥 𝐴 ) ) )
79 71 72 78 2 vtoclf ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ∧ 0 ≤ - 𝑎 ) → 0 ≤ - 𝑎 / 𝑥 𝐴 )
80 79 3expia ( ( 𝜑 ∧ - 𝑎 ∈ ℤ ) → ( 0 ≤ - 𝑎 → 0 ≤ - 𝑎 / 𝑥 𝐴 ) )
81 67 80 sylan2 ( ( 𝜑𝑎 ∈ ℤ ) → ( 0 ≤ - 𝑎 → 0 ≤ - 𝑎 / 𝑥 𝐴 ) )
82 60 breq2d ( ( 𝜑𝑎 ∈ ℤ ) → ( 0 ≤ - 𝑎 / 𝑥 𝐴 ↔ 0 ≤ - 𝑎 / 𝑥 𝐴 ) )
83 81 82 sylibd ( ( 𝜑𝑎 ∈ ℤ ) → ( 0 ≤ - 𝑎 → 0 ≤ - 𝑎 / 𝑥 𝐴 ) )
84 39 adantl ( ( 𝜑𝑎 ∈ ℤ ) → 𝑎 ∈ ℝ )
85 84 le0neg1d ( ( 𝜑𝑎 ∈ ℤ ) → ( 𝑎 ≤ 0 ↔ 0 ≤ - 𝑎 ) )
86 25 le0neg1d ( ( 𝜑𝑎 ∈ ℤ ) → ( 𝑎 / 𝑥 𝐴 ≤ 0 ↔ 0 ≤ - 𝑎 / 𝑥 𝐴 ) )
87 83 85 86 3imtr4d ( ( 𝜑𝑎 ∈ ℤ ) → ( 𝑎 ≤ 0 → 𝑎 / 𝑥 𝐴 ≤ 0 ) )
88 87 imp ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → 𝑎 / 𝑥 𝐴 ≤ 0 )
89 66 88 absnidd ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ( abs ‘ 𝑎 / 𝑥 𝐴 ) = - 𝑎 / 𝑥 𝐴 )
90 61 65 89 3eqtr4rd ( ( ( 𝜑𝑎 ∈ ℤ ) ∧ 𝑎 ≤ 0 ) → ( abs ‘ 𝑎 / 𝑥 𝐴 ) = ( abs ‘ 𝑎 ) / 𝑥 𝐴 )
91 0re 0 ∈ ℝ
92 letric ( ( 0 ∈ ℝ ∧ 𝑎 ∈ ℝ ) → ( 0 ≤ 𝑎𝑎 ≤ 0 ) )
93 91 39 92 sylancr ( 𝑎 ∈ ℤ → ( 0 ≤ 𝑎𝑎 ≤ 0 ) )
94 93 adantl ( ( 𝜑𝑎 ∈ ℤ ) → ( 0 ≤ 𝑎𝑎 ≤ 0 ) )
95 44 90 94 mpjaodan ( ( 𝜑𝑎 ∈ ℤ ) → ( abs ‘ 𝑎 / 𝑥 𝐴 ) = ( abs ‘ 𝑎 ) / 𝑥 𝐴 )
96 15 95 vtoclg ( 𝐷 ∈ ℤ → ( ( 𝜑𝐷 ∈ ℤ ) → ( abs ‘ 𝐷 / 𝑥 𝐴 ) = ( abs ‘ 𝐷 ) / 𝑥 𝐴 ) )
97 96 anabsi7 ( ( 𝜑𝐷 ∈ ℤ ) → ( abs ‘ 𝐷 / 𝑥 𝐴 ) = ( abs ‘ 𝐷 ) / 𝑥 𝐴 )
98 nfcvd ( 𝐷 ∈ ℤ → 𝑥 𝐸 )
99 98 6 csbiegf ( 𝐷 ∈ ℤ → 𝐷 / 𝑥 𝐴 = 𝐸 )
100 99 fveq2d ( 𝐷 ∈ ℤ → ( abs ‘ 𝐷 / 𝑥 𝐴 ) = ( abs ‘ 𝐸 ) )
101 100 adantl ( ( 𝜑𝐷 ∈ ℤ ) → ( abs ‘ 𝐷 / 𝑥 𝐴 ) = ( abs ‘ 𝐸 ) )
102 fvex ( abs ‘ 𝐷 ) ∈ V
103 102 7 csbie ( abs ‘ 𝐷 ) / 𝑥 𝐴 = 𝐹
104 103 a1i ( ( 𝜑𝐷 ∈ ℤ ) → ( abs ‘ 𝐷 ) / 𝑥 𝐴 = 𝐹 )
105 97 101 104 3eqtr3d ( ( 𝜑𝐷 ∈ ℤ ) → ( abs ‘ 𝐸 ) = 𝐹 )