| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z |  |-  0 e. ZZ | 
						
							| 2 |  | oveq2 |  |-  ( a = b -> ( A rmY a ) = ( A rmY b ) ) | 
						
							| 3 |  | oveq2 |  |-  ( a = N -> ( A rmY a ) = ( A rmY N ) ) | 
						
							| 4 |  | oveq2 |  |-  ( a = 0 -> ( A rmY a ) = ( A rmY 0 ) ) | 
						
							| 5 |  | zssre |  |-  ZZ C_ RR | 
						
							| 6 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 7 | 6 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. ZZ ) | 
						
							| 8 | 7 | zred |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. RR ) | 
						
							| 9 |  | ltrmy |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ b e. ZZ ) -> ( a < b <-> ( A rmY a ) < ( A rmY b ) ) ) | 
						
							| 10 | 9 | biimpd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ b e. ZZ ) -> ( a < b -> ( A rmY a ) < ( A rmY b ) ) ) | 
						
							| 11 | 10 | 3expb |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a < b -> ( A rmY a ) < ( A rmY b ) ) ) | 
						
							| 12 | 2 3 4 5 8 11 | eqord1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ 0 e. ZZ ) ) -> ( N = 0 <-> ( A rmY N ) = ( A rmY 0 ) ) ) | 
						
							| 13 | 1 12 | mpanr2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( N = 0 <-> ( A rmY N ) = ( A rmY 0 ) ) ) | 
						
							| 14 |  | rmy0 |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) | 
						
							| 15 | 14 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY 0 ) = 0 ) | 
						
							| 16 | 15 | eqeq2d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmY N ) = ( A rmY 0 ) <-> ( A rmY N ) = 0 ) ) | 
						
							| 17 | 13 16 | bitrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( N = 0 <-> ( A rmY N ) = 0 ) ) |