| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  𝑏 ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑎  =  𝑁  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  𝑁 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑎  =  0  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  0 ) ) | 
						
							| 5 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 6 |  | frmy | ⊢  Yrm  : ( ( ℤ≥ ‘ 2 )  ×  ℤ ) ⟶ ℤ | 
						
							| 7 | 6 | fovcl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ )  →  ( 𝐴  Yrm  𝑎 )  ∈  ℤ ) | 
						
							| 8 | 7 | zred | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ )  →  ( 𝐴  Yrm  𝑎 )  ∈  ℝ ) | 
						
							| 9 |  | ltrmy | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑎  <  𝑏  ↔  ( 𝐴  Yrm  𝑎 )  <  ( 𝐴  Yrm  𝑏 ) ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑎  <  𝑏  →  ( 𝐴  Yrm  𝑎 )  <  ( 𝐴  Yrm  𝑏 ) ) ) | 
						
							| 11 | 10 | 3expb | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑎  <  𝑏  →  ( 𝐴  Yrm  𝑎 )  <  ( 𝐴  Yrm  𝑏 ) ) ) | 
						
							| 12 | 2 3 4 5 8 11 | eqord1 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑁  ∈  ℤ  ∧  0  ∈  ℤ ) )  →  ( 𝑁  =  0  ↔  ( 𝐴  Yrm  𝑁 )  =  ( 𝐴  Yrm  0 ) ) ) | 
						
							| 13 | 1 12 | mpanr2 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  =  0  ↔  ( 𝐴  Yrm  𝑁 )  =  ( 𝐴  Yrm  0 ) ) ) | 
						
							| 14 |  | rmy0 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  Yrm  0 )  =  0 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  Yrm  0 )  =  0 ) | 
						
							| 16 | 15 | eqeq2d | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( ( 𝐴  Yrm  𝑁 )  =  ( 𝐴  Yrm  0 )  ↔  ( 𝐴  Yrm  𝑁 )  =  0 ) ) | 
						
							| 17 | 13 16 | bitrd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  =  0  ↔  ( 𝐴  Yrm  𝑁 )  =  0 ) ) |