Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
oveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑏 ) ) |
3 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 𝑁 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑎 = 0 → ( 𝐴 Yrm 𝑎 ) = ( 𝐴 Yrm 0 ) ) |
5 |
|
zssre |
⊢ ℤ ⊆ ℝ |
6 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
7 |
6
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℤ ) |
8 |
7
|
zred |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ) → ( 𝐴 Yrm 𝑎 ) ∈ ℝ ) |
9 |
|
ltrmy |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 < 𝑏 ↔ ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
10 |
9
|
biimpd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) → ( 𝑎 < 𝑏 → ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
11 |
10
|
3expb |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ ) ) → ( 𝑎 < 𝑏 → ( 𝐴 Yrm 𝑎 ) < ( 𝐴 Yrm 𝑏 ) ) ) |
12 |
2 3 4 5 8 11
|
eqord1 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) ) → ( 𝑁 = 0 ↔ ( 𝐴 Yrm 𝑁 ) = ( 𝐴 Yrm 0 ) ) ) |
13 |
1 12
|
mpanr2 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑁 = 0 ↔ ( 𝐴 Yrm 𝑁 ) = ( 𝐴 Yrm 0 ) ) ) |
14 |
|
rmy0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 0 ) = 0 ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐴 Yrm 0 ) = 0 ) |
16 |
15
|
eqeq2d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 Yrm 𝑁 ) = ( 𝐴 Yrm 0 ) ↔ ( 𝐴 Yrm 𝑁 ) = 0 ) ) |
17 |
13 16
|
bitrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑁 = 0 ↔ ( 𝐴 Yrm 𝑁 ) = 0 ) ) |