Metamath Proof Explorer


Theorem rmyeq0

Description: Y is zero only at zero. (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Assertion rmyeq0 A2NN=0AYrmN=0

Proof

Step Hyp Ref Expression
1 0z 0
2 oveq2 a=bAYrma=AYrmb
3 oveq2 a=NAYrma=AYrmN
4 oveq2 a=0AYrma=AYrm0
5 zssre
6 frmy Yrm:2×
7 6 fovcl A2aAYrma
8 7 zred A2aAYrma
9 ltrmy A2aba<bAYrma<AYrmb
10 9 biimpd A2aba<bAYrma<AYrmb
11 10 3expb A2aba<bAYrma<AYrmb
12 2 3 4 5 8 11 eqord1 A2N0N=0AYrmN=AYrm0
13 1 12 mpanr2 A2NN=0AYrmN=AYrm0
14 rmy0 A2AYrm0=0
15 14 adantr A2NAYrm0=0
16 15 eqeq2d A2NAYrmN=AYrm0AYrmN=0
17 13 16 bitrd A2NN=0AYrmN=0