Metamath Proof Explorer


Theorem rmyeq0

Description: Y is zero only at zero. (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Assertion rmyeq0 A 2 N N = 0 A Y rm N = 0

Proof

Step Hyp Ref Expression
1 0z 0
2 oveq2 a = b A Y rm a = A Y rm b
3 oveq2 a = N A Y rm a = A Y rm N
4 oveq2 a = 0 A Y rm a = A Y rm 0
5 zssre
6 frmy Y rm : 2 ×
7 6 fovcl A 2 a A Y rm a
8 7 zred A 2 a A Y rm a
9 ltrmy A 2 a b a < b A Y rm a < A Y rm b
10 9 biimpd A 2 a b a < b A Y rm a < A Y rm b
11 10 3expb A 2 a b a < b A Y rm a < A Y rm b
12 2 3 4 5 8 11 eqord1 A 2 N 0 N = 0 A Y rm N = A Y rm 0
13 1 12 mpanr2 A 2 N N = 0 A Y rm N = A Y rm 0
14 rmy0 A 2 A Y rm 0 = 0
15 14 adantr A 2 N A Y rm 0 = 0
16 15 eqeq2d A 2 N A Y rm N = A Y rm 0 A Y rm N = 0
17 13 16 bitrd A 2 N N = 0 A Y rm N = 0