Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
X and Y sequences 2: Order properties
rmyeq0
Next ⟩
rmyeq
Metamath Proof Explorer
Ascii
Unicode
Theorem
rmyeq0
Description:
Y is zero only at zero.
(Contributed by
Stefan O'Rear
, 26-Sep-2014)
Ref
Expression
Assertion
rmyeq0
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
N
=
0
↔
A
Y
rm
N
=
0
Proof
Step
Hyp
Ref
Expression
1
0z
⊢
0
∈
ℤ
2
oveq2
⊢
a
=
b
→
A
Y
rm
a
=
A
Y
rm
b
3
oveq2
⊢
a
=
N
→
A
Y
rm
a
=
A
Y
rm
N
4
oveq2
⊢
a
=
0
→
A
Y
rm
a
=
A
Y
rm
0
5
zssre
⊢
ℤ
⊆
ℝ
6
frmy
⊢
Y
rm
:
ℤ
≥
2
×
ℤ
⟶
ℤ
7
6
fovcl
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
→
A
Y
rm
a
∈
ℤ
8
7
zred
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
→
A
Y
rm
a
∈
ℝ
9
ltrmy
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
<
b
↔
A
Y
rm
a
<
A
Y
rm
b
10
9
biimpd
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
<
b
→
A
Y
rm
a
<
A
Y
rm
b
11
10
3expb
⊢
A
∈
ℤ
≥
2
∧
a
∈
ℤ
∧
b
∈
ℤ
→
a
<
b
→
A
Y
rm
a
<
A
Y
rm
b
12
2
3
4
5
8
11
eqord1
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
∧
0
∈
ℤ
→
N
=
0
↔
A
Y
rm
N
=
A
Y
rm
0
13
1
12
mpanr2
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
N
=
0
↔
A
Y
rm
N
=
A
Y
rm
0
14
rmy0
⊢
A
∈
ℤ
≥
2
→
A
Y
rm
0
=
0
15
14
adantr
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
A
Y
rm
0
=
0
16
15
eqeq2d
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
A
Y
rm
N
=
A
Y
rm
0
↔
A
Y
rm
N
=
0
17
13
16
bitrd
⊢
A
∈
ℤ
≥
2
∧
N
∈
ℤ
→
N
=
0
↔
A
Y
rm
N
=
0