Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
2 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
3 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
4 |
1 3
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A rmX N ) e. NN0 ) |
5 |
|
rmxypos |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( 0 < ( A rmX N ) /\ 0 <_ ( A rmY N ) ) ) |
6 |
5
|
simpld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> 0 < ( A rmX N ) ) |
7 |
|
elnnnn0b |
|- ( ( A rmX N ) e. NN <-> ( ( A rmX N ) e. NN0 /\ 0 < ( A rmX N ) ) ) |
8 |
4 6 7
|
sylanbrc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A rmX N ) e. NN ) |
9 |
8
|
adantlr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ N e. NN0 ) -> ( A rmX N ) e. NN ) |
10 |
|
rmxneg |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX -u N ) = ( A rmX N ) ) |
11 |
10
|
adantr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( A rmX -u N ) = ( A rmX N ) ) |
12 |
|
nn0z |
|- ( -u N e. NN0 -> -u N e. ZZ ) |
13 |
2
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ -u N e. ZZ ) -> ( A rmX -u N ) e. NN0 ) |
14 |
12 13
|
sylan2 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ -u N e. NN0 ) -> ( A rmX -u N ) e. NN0 ) |
15 |
|
rmxypos |
|- ( ( A e. ( ZZ>= ` 2 ) /\ -u N e. NN0 ) -> ( 0 < ( A rmX -u N ) /\ 0 <_ ( A rmY -u N ) ) ) |
16 |
15
|
simpld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ -u N e. NN0 ) -> 0 < ( A rmX -u N ) ) |
17 |
|
elnnnn0b |
|- ( ( A rmX -u N ) e. NN <-> ( ( A rmX -u N ) e. NN0 /\ 0 < ( A rmX -u N ) ) ) |
18 |
14 16 17
|
sylanbrc |
|- ( ( A e. ( ZZ>= ` 2 ) /\ -u N e. NN0 ) -> ( A rmX -u N ) e. NN ) |
19 |
18
|
adantlr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( A rmX -u N ) e. NN ) |
20 |
11 19
|
eqeltrrd |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( A rmX N ) e. NN ) |
21 |
|
elznn0 |
|- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
22 |
21
|
simprbi |
|- ( N e. ZZ -> ( N e. NN0 \/ -u N e. NN0 ) ) |
23 |
22
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( N e. NN0 \/ -u N e. NN0 ) ) |
24 |
9 20 23
|
mpjaodan |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN ) |