Metamath Proof Explorer


Theorem rmynn0

Description: rmY is nonnegative for nonnegative arguments. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion rmynn0
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A rmY N ) e. NN0 )

Proof

Step Hyp Ref Expression
1 nn0z
 |-  ( N e. NN0 -> N e. ZZ )
2 frmy
 |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ
3 2 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ )
4 1 3 sylan2
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A rmY N ) e. ZZ )
5 rmxypos
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( 0 < ( A rmX N ) /\ 0 <_ ( A rmY N ) ) )
6 5 simprd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> 0 <_ ( A rmY N ) )
7 elnn0z
 |-  ( ( A rmY N ) e. NN0 <-> ( ( A rmY N ) e. ZZ /\ 0 <_ ( A rmY N ) ) )
8 4 6 7 sylanbrc
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( A rmY N ) e. NN0 )