| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 2 | 1 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. ZZ ) | 
						
							| 3 | 2 | zred |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ ) -> ( A rmY a ) e. RR ) | 
						
							| 4 |  | simp1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ 0 <_ a ) -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 5 |  | elnn0z |  |-  ( a e. NN0 <-> ( a e. ZZ /\ 0 <_ a ) ) | 
						
							| 6 | 5 | biimpri |  |-  ( ( a e. ZZ /\ 0 <_ a ) -> a e. NN0 ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ 0 <_ a ) -> a e. NN0 ) | 
						
							| 8 |  | rmxypos |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. NN0 ) -> ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) ) | 
						
							| 9 | 4 7 8 | syl2anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ 0 <_ a ) -> ( 0 < ( A rmX a ) /\ 0 <_ ( A rmY a ) ) ) | 
						
							| 10 | 9 | simprd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ a e. ZZ /\ 0 <_ a ) -> 0 <_ ( A rmY a ) ) | 
						
							| 11 |  | rmyneg |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ b e. ZZ ) -> ( A rmY -u b ) = -u ( A rmY b ) ) | 
						
							| 12 |  | oveq2 |  |-  ( a = b -> ( A rmY a ) = ( A rmY b ) ) | 
						
							| 13 |  | oveq2 |  |-  ( a = -u b -> ( A rmY a ) = ( A rmY -u b ) ) | 
						
							| 14 |  | oveq2 |  |-  ( a = B -> ( A rmY a ) = ( A rmY B ) ) | 
						
							| 15 |  | oveq2 |  |-  ( a = ( abs ` B ) -> ( A rmY a ) = ( A rmY ( abs ` B ) ) ) | 
						
							| 16 | 3 10 11 12 13 14 15 | oddcomabszz |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( abs ` ( A rmY B ) ) = ( A rmY ( abs ` B ) ) ) |