| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frmy | ⊢  Yrm  : ( ( ℤ≥ ‘ 2 )  ×  ℤ ) ⟶ ℤ | 
						
							| 2 | 1 | fovcl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ )  →  ( 𝐴  Yrm  𝑎 )  ∈  ℤ ) | 
						
							| 3 | 2 | zred | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ )  →  ( 𝐴  Yrm  𝑎 )  ∈  ℝ ) | 
						
							| 4 |  | simp1 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ  ∧  0  ≤  𝑎 )  →  𝐴  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 5 |  | elnn0z | ⊢ ( 𝑎  ∈  ℕ0  ↔  ( 𝑎  ∈  ℤ  ∧  0  ≤  𝑎 ) ) | 
						
							| 6 | 5 | biimpri | ⊢ ( ( 𝑎  ∈  ℤ  ∧  0  ≤  𝑎 )  →  𝑎  ∈  ℕ0 ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ  ∧  0  ≤  𝑎 )  →  𝑎  ∈  ℕ0 ) | 
						
							| 8 |  | rmxypos | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℕ0 )  →  ( 0  <  ( 𝐴  Xrm  𝑎 )  ∧  0  ≤  ( 𝐴  Yrm  𝑎 ) ) ) | 
						
							| 9 | 4 7 8 | syl2anc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ  ∧  0  ≤  𝑎 )  →  ( 0  <  ( 𝐴  Xrm  𝑎 )  ∧  0  ≤  ( 𝐴  Yrm  𝑎 ) ) ) | 
						
							| 10 | 9 | simprd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑎  ∈  ℤ  ∧  0  ≤  𝑎 )  →  0  ≤  ( 𝐴  Yrm  𝑎 ) ) | 
						
							| 11 |  | rmyneg | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑏  ∈  ℤ )  →  ( 𝐴  Yrm  - 𝑏 )  =  - ( 𝐴  Yrm  𝑏 ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  𝑏 ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑎  =  - 𝑏  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  - 𝑏 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑎  =  𝐵  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  𝐵 ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑎  =  ( abs ‘ 𝐵 )  →  ( 𝐴  Yrm  𝑎 )  =  ( 𝐴  Yrm  ( abs ‘ 𝐵 ) ) ) | 
						
							| 16 | 3 10 11 12 13 14 15 | oddcomabszz | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐵  ∈  ℤ )  →  ( abs ‘ ( 𝐴  Yrm  𝐵 ) )  =  ( 𝐴  Yrm  ( abs ‘ 𝐵 ) ) ) |