| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 2 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 3 | 2 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) | 
						
							| 4 | 1 3 | sylan2 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. ZZ ) | 
						
							| 5 |  | rmy0 |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) = 0 ) | 
						
							| 7 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 8 | 7 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < N ) | 
						
							| 9 |  | simpl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> A e. ( ZZ>= ` 2 ) ) | 
						
							| 10 |  | 0zd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 e. ZZ ) | 
						
							| 11 | 1 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. ZZ ) | 
						
							| 12 |  | ltrmy |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ N e. ZZ ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) ) | 
						
							| 13 | 9 10 11 12 | syl3anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) ) | 
						
							| 14 | 8 13 | mpbid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) < ( A rmY N ) ) | 
						
							| 15 | 6 14 | eqbrtrrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < ( A rmY N ) ) | 
						
							| 16 |  | elnnz |  |-  ( ( A rmY N ) e. NN <-> ( ( A rmY N ) e. ZZ /\ 0 < ( A rmY N ) ) ) | 
						
							| 17 | 4 15 16 | sylanbrc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. NN ) |