Metamath Proof Explorer


Theorem rmynn

Description: rmY is positive for positive arguments. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion rmynn
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. NN )

Proof

Step Hyp Ref Expression
1 nnz
 |-  ( N e. NN -> N e. ZZ )
2 frmy
 |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ
3 2 fovcl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ )
4 1 3 sylan2
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. ZZ )
5 rmy0
 |-  ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 )
6 5 adantr
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) = 0 )
7 nngt0
 |-  ( N e. NN -> 0 < N )
8 7 adantl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < N )
9 simpl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> A e. ( ZZ>= ` 2 ) )
10 0zd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 e. ZZ )
11 1 adantl
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> N e. ZZ )
12 ltrmy
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ N e. ZZ ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) )
13 9 10 11 12 syl3anc
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( 0 < N <-> ( A rmY 0 ) < ( A rmY N ) ) )
14 8 13 mpbid
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY 0 ) < ( A rmY N ) )
15 6 14 eqbrtrrd
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> 0 < ( A rmY N ) )
16 elnnz
 |-  ( ( A rmY N ) e. NN <-> ( ( A rmY N ) e. ZZ /\ 0 < ( A rmY N ) ) )
17 4 15 16 sylanbrc
 |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. NN ) -> ( A rmY N ) e. NN )