Step |
Hyp |
Ref |
Expression |
1 |
|
limsupequzmptf.j |
⊢ Ⅎ 𝑗 𝜑 |
2 |
|
limsupequzmptf.o |
⊢ Ⅎ 𝑗 𝐴 |
3 |
|
limsupequzmptf.p |
⊢ Ⅎ 𝑗 𝐵 |
4 |
|
limsupequzmptf.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
limsupequzmptf.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
6 |
|
limsupequzmptf.a |
⊢ 𝐴 = ( ℤ≥ ‘ 𝑀 ) |
7 |
|
limsupequzmptf.b |
⊢ 𝐵 = ( ℤ≥ ‘ 𝑁 ) |
8 |
|
limsupequzmptf.c |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
9 |
|
limsupequzmptf.d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐵 ) → 𝐶 ∈ 𝑊 ) |
10 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
11 |
2
|
nfcri |
⊢ Ⅎ 𝑗 𝑘 ∈ 𝐴 |
12 |
1 11
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) |
13 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑘 / 𝑗 ⦌ 𝐶 |
14 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑉 |
15 |
13 14
|
nfel |
⊢ Ⅎ 𝑗 ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑉 |
16 |
12 15
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑉 ) |
17 |
|
eleq1w |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ) ) |
19 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑘 → 𝐶 = ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) |
20 |
19
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( 𝐶 ∈ 𝑉 ↔ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑉 ) ) |
21 |
18 20
|
imbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑉 ) ) ) |
22 |
16 21 8
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑉 ) |
23 |
3
|
nfcri |
⊢ Ⅎ 𝑗 𝑘 ∈ 𝐵 |
24 |
1 23
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) |
25 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑊 |
26 |
13 25
|
nfel |
⊢ Ⅎ 𝑗 ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑊 |
27 |
24 26
|
nfim |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑊 ) |
28 |
|
eleq1w |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ 𝐵 ↔ 𝑘 ∈ 𝐵 ) ) |
29 |
28
|
anbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 ∧ 𝑗 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ) ) |
30 |
19
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( 𝐶 ∈ 𝑊 ↔ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑊 ) ) |
31 |
29 30
|
imbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐵 ) → 𝐶 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑊 ) ) ) |
32 |
27 31 9
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ∈ 𝑊 ) |
33 |
10 4 5 6 7 22 32
|
limsupequzmpt |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑘 ∈ 𝐴 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) ) = ( lim sup ‘ ( 𝑘 ∈ 𝐵 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) ) ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
35 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐶 |
36 |
2 34 35 13 19
|
cbvmptf |
⊢ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) |
37 |
36
|
fveq2i |
⊢ ( lim sup ‘ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ) = ( lim sup ‘ ( 𝑘 ∈ 𝐴 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) ) |
38 |
37
|
a1i |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ) = ( lim sup ‘ ( 𝑘 ∈ 𝐴 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) ) ) |
39 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
40 |
3 39 35 13 19
|
cbvmptf |
⊢ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐵 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) |
41 |
40
|
fveq2i |
⊢ ( lim sup ‘ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ) = ( lim sup ‘ ( 𝑘 ∈ 𝐵 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) ) |
42 |
41
|
a1i |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ) = ( lim sup ‘ ( 𝑘 ∈ 𝐵 ↦ ⦋ 𝑘 / 𝑗 ⦌ 𝐶 ) ) ) |
43 |
33 38 42
|
3eqtr4d |
⊢ ( 𝜑 → ( lim sup ‘ ( 𝑗 ∈ 𝐴 ↦ 𝐶 ) ) = ( lim sup ‘ ( 𝑗 ∈ 𝐵 ↦ 𝐶 ) ) ) |