Metamath Proof Explorer


Theorem limsupequzmptf

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequzmptf.j 𝑗 𝜑
limsupequzmptf.o 𝑗 𝐴
limsupequzmptf.p 𝑗 𝐵
limsupequzmptf.m ( 𝜑𝑀 ∈ ℤ )
limsupequzmptf.n ( 𝜑𝑁 ∈ ℤ )
limsupequzmptf.a 𝐴 = ( ℤ𝑀 )
limsupequzmptf.b 𝐵 = ( ℤ𝑁 )
limsupequzmptf.c ( ( 𝜑𝑗𝐴 ) → 𝐶𝑉 )
limsupequzmptf.d ( ( 𝜑𝑗𝐵 ) → 𝐶𝑊 )
Assertion limsupequzmptf ( 𝜑 → ( lim sup ‘ ( 𝑗𝐴𝐶 ) ) = ( lim sup ‘ ( 𝑗𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 limsupequzmptf.j 𝑗 𝜑
2 limsupequzmptf.o 𝑗 𝐴
3 limsupequzmptf.p 𝑗 𝐵
4 limsupequzmptf.m ( 𝜑𝑀 ∈ ℤ )
5 limsupequzmptf.n ( 𝜑𝑁 ∈ ℤ )
6 limsupequzmptf.a 𝐴 = ( ℤ𝑀 )
7 limsupequzmptf.b 𝐵 = ( ℤ𝑁 )
8 limsupequzmptf.c ( ( 𝜑𝑗𝐴 ) → 𝐶𝑉 )
9 limsupequzmptf.d ( ( 𝜑𝑗𝐵 ) → 𝐶𝑊 )
10 nfv 𝑘 𝜑
11 2 nfcri 𝑗 𝑘𝐴
12 1 11 nfan 𝑗 ( 𝜑𝑘𝐴 )
13 nfcsb1v 𝑗 𝑘 / 𝑗 𝐶
14 nfcv 𝑗 𝑉
15 13 14 nfel 𝑗 𝑘 / 𝑗 𝐶𝑉
16 12 15 nfim 𝑗 ( ( 𝜑𝑘𝐴 ) → 𝑘 / 𝑗 𝐶𝑉 )
17 eleq1w ( 𝑗 = 𝑘 → ( 𝑗𝐴𝑘𝐴 ) )
18 17 anbi2d ( 𝑗 = 𝑘 → ( ( 𝜑𝑗𝐴 ) ↔ ( 𝜑𝑘𝐴 ) ) )
19 csbeq1a ( 𝑗 = 𝑘𝐶 = 𝑘 / 𝑗 𝐶 )
20 19 eleq1d ( 𝑗 = 𝑘 → ( 𝐶𝑉 𝑘 / 𝑗 𝐶𝑉 ) )
21 18 20 imbi12d ( 𝑗 = 𝑘 → ( ( ( 𝜑𝑗𝐴 ) → 𝐶𝑉 ) ↔ ( ( 𝜑𝑘𝐴 ) → 𝑘 / 𝑗 𝐶𝑉 ) ) )
22 16 21 8 chvarfv ( ( 𝜑𝑘𝐴 ) → 𝑘 / 𝑗 𝐶𝑉 )
23 3 nfcri 𝑗 𝑘𝐵
24 1 23 nfan 𝑗 ( 𝜑𝑘𝐵 )
25 nfcv 𝑗 𝑊
26 13 25 nfel 𝑗 𝑘 / 𝑗 𝐶𝑊
27 24 26 nfim 𝑗 ( ( 𝜑𝑘𝐵 ) → 𝑘 / 𝑗 𝐶𝑊 )
28 eleq1w ( 𝑗 = 𝑘 → ( 𝑗𝐵𝑘𝐵 ) )
29 28 anbi2d ( 𝑗 = 𝑘 → ( ( 𝜑𝑗𝐵 ) ↔ ( 𝜑𝑘𝐵 ) ) )
30 19 eleq1d ( 𝑗 = 𝑘 → ( 𝐶𝑊 𝑘 / 𝑗 𝐶𝑊 ) )
31 29 30 imbi12d ( 𝑗 = 𝑘 → ( ( ( 𝜑𝑗𝐵 ) → 𝐶𝑊 ) ↔ ( ( 𝜑𝑘𝐵 ) → 𝑘 / 𝑗 𝐶𝑊 ) ) )
32 27 31 9 chvarfv ( ( 𝜑𝑘𝐵 ) → 𝑘 / 𝑗 𝐶𝑊 )
33 10 4 5 6 7 22 32 limsupequzmpt ( 𝜑 → ( lim sup ‘ ( 𝑘𝐴 𝑘 / 𝑗 𝐶 ) ) = ( lim sup ‘ ( 𝑘𝐵 𝑘 / 𝑗 𝐶 ) ) )
34 nfcv 𝑘 𝐴
35 nfcv 𝑘 𝐶
36 2 34 35 13 19 cbvmptf ( 𝑗𝐴𝐶 ) = ( 𝑘𝐴 𝑘 / 𝑗 𝐶 )
37 36 fveq2i ( lim sup ‘ ( 𝑗𝐴𝐶 ) ) = ( lim sup ‘ ( 𝑘𝐴 𝑘 / 𝑗 𝐶 ) )
38 37 a1i ( 𝜑 → ( lim sup ‘ ( 𝑗𝐴𝐶 ) ) = ( lim sup ‘ ( 𝑘𝐴 𝑘 / 𝑗 𝐶 ) ) )
39 nfcv 𝑘 𝐵
40 3 39 35 13 19 cbvmptf ( 𝑗𝐵𝐶 ) = ( 𝑘𝐵 𝑘 / 𝑗 𝐶 )
41 40 fveq2i ( lim sup ‘ ( 𝑗𝐵𝐶 ) ) = ( lim sup ‘ ( 𝑘𝐵 𝑘 / 𝑗 𝐶 ) )
42 41 a1i ( 𝜑 → ( lim sup ‘ ( 𝑗𝐵𝐶 ) ) = ( lim sup ‘ ( 𝑘𝐵 𝑘 / 𝑗 𝐶 ) ) )
43 33 38 42 3eqtr4d ( 𝜑 → ( lim sup ‘ ( 𝑗𝐴𝐶 ) ) = ( lim sup ‘ ( 𝑗𝐵𝐶 ) ) )