Step |
Hyp |
Ref |
Expression |
1 |
|
limsupequzmptf.j |
|- F/ j ph |
2 |
|
limsupequzmptf.o |
|- F/_ j A |
3 |
|
limsupequzmptf.p |
|- F/_ j B |
4 |
|
limsupequzmptf.m |
|- ( ph -> M e. ZZ ) |
5 |
|
limsupequzmptf.n |
|- ( ph -> N e. ZZ ) |
6 |
|
limsupequzmptf.a |
|- A = ( ZZ>= ` M ) |
7 |
|
limsupequzmptf.b |
|- B = ( ZZ>= ` N ) |
8 |
|
limsupequzmptf.c |
|- ( ( ph /\ j e. A ) -> C e. V ) |
9 |
|
limsupequzmptf.d |
|- ( ( ph /\ j e. B ) -> C e. W ) |
10 |
|
nfv |
|- F/ k ph |
11 |
2
|
nfcri |
|- F/ j k e. A |
12 |
1 11
|
nfan |
|- F/ j ( ph /\ k e. A ) |
13 |
|
nfcsb1v |
|- F/_ j [_ k / j ]_ C |
14 |
|
nfcv |
|- F/_ j V |
15 |
13 14
|
nfel |
|- F/ j [_ k / j ]_ C e. V |
16 |
12 15
|
nfim |
|- F/ j ( ( ph /\ k e. A ) -> [_ k / j ]_ C e. V ) |
17 |
|
eleq1w |
|- ( j = k -> ( j e. A <-> k e. A ) ) |
18 |
17
|
anbi2d |
|- ( j = k -> ( ( ph /\ j e. A ) <-> ( ph /\ k e. A ) ) ) |
19 |
|
csbeq1a |
|- ( j = k -> C = [_ k / j ]_ C ) |
20 |
19
|
eleq1d |
|- ( j = k -> ( C e. V <-> [_ k / j ]_ C e. V ) ) |
21 |
18 20
|
imbi12d |
|- ( j = k -> ( ( ( ph /\ j e. A ) -> C e. V ) <-> ( ( ph /\ k e. A ) -> [_ k / j ]_ C e. V ) ) ) |
22 |
16 21 8
|
chvarfv |
|- ( ( ph /\ k e. A ) -> [_ k / j ]_ C e. V ) |
23 |
3
|
nfcri |
|- F/ j k e. B |
24 |
1 23
|
nfan |
|- F/ j ( ph /\ k e. B ) |
25 |
|
nfcv |
|- F/_ j W |
26 |
13 25
|
nfel |
|- F/ j [_ k / j ]_ C e. W |
27 |
24 26
|
nfim |
|- F/ j ( ( ph /\ k e. B ) -> [_ k / j ]_ C e. W ) |
28 |
|
eleq1w |
|- ( j = k -> ( j e. B <-> k e. B ) ) |
29 |
28
|
anbi2d |
|- ( j = k -> ( ( ph /\ j e. B ) <-> ( ph /\ k e. B ) ) ) |
30 |
19
|
eleq1d |
|- ( j = k -> ( C e. W <-> [_ k / j ]_ C e. W ) ) |
31 |
29 30
|
imbi12d |
|- ( j = k -> ( ( ( ph /\ j e. B ) -> C e. W ) <-> ( ( ph /\ k e. B ) -> [_ k / j ]_ C e. W ) ) ) |
32 |
27 31 9
|
chvarfv |
|- ( ( ph /\ k e. B ) -> [_ k / j ]_ C e. W ) |
33 |
10 4 5 6 7 22 32
|
limsupequzmpt |
|- ( ph -> ( limsup ` ( k e. A |-> [_ k / j ]_ C ) ) = ( limsup ` ( k e. B |-> [_ k / j ]_ C ) ) ) |
34 |
|
nfcv |
|- F/_ k A |
35 |
|
nfcv |
|- F/_ k C |
36 |
2 34 35 13 19
|
cbvmptf |
|- ( j e. A |-> C ) = ( k e. A |-> [_ k / j ]_ C ) |
37 |
36
|
fveq2i |
|- ( limsup ` ( j e. A |-> C ) ) = ( limsup ` ( k e. A |-> [_ k / j ]_ C ) ) |
38 |
37
|
a1i |
|- ( ph -> ( limsup ` ( j e. A |-> C ) ) = ( limsup ` ( k e. A |-> [_ k / j ]_ C ) ) ) |
39 |
|
nfcv |
|- F/_ k B |
40 |
3 39 35 13 19
|
cbvmptf |
|- ( j e. B |-> C ) = ( k e. B |-> [_ k / j ]_ C ) |
41 |
40
|
fveq2i |
|- ( limsup ` ( j e. B |-> C ) ) = ( limsup ` ( k e. B |-> [_ k / j ]_ C ) ) |
42 |
41
|
a1i |
|- ( ph -> ( limsup ` ( j e. B |-> C ) ) = ( limsup ` ( k e. B |-> [_ k / j ]_ C ) ) ) |
43 |
33 38 42
|
3eqtr4d |
|- ( ph -> ( limsup ` ( j e. A |-> C ) ) = ( limsup ` ( j e. B |-> C ) ) ) |