| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  𝑃  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 2 |  | colineartriv1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 ) )  →  𝑃  Colinear  〈 𝑃 ,  𝑄 〉 ) | 
						
							| 3 | 2 | 3adant3r3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  𝑃  Colinear  〈 𝑃 ,  𝑄 〉 ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑥  =  𝑃  →  ( 𝑥  Colinear  〈 𝑃 ,  𝑄 〉  ↔  𝑃  Colinear  〈 𝑃 ,  𝑄 〉 ) ) | 
						
							| 5 | 4 | elrab | ⊢ ( 𝑃  ∈  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑥  Colinear  〈 𝑃 ,  𝑄 〉 }  ↔  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  Colinear  〈 𝑃 ,  𝑄 〉 ) ) | 
						
							| 6 | 1 3 5 | sylanbrc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  𝑃  ∈  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑥  Colinear  〈 𝑃 ,  𝑄 〉 } ) | 
						
							| 7 |  | fvline2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  ( 𝑃 Line 𝑄 )  =  { 𝑥  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑥  Colinear  〈 𝑃 ,  𝑄 〉 } ) | 
						
							| 8 | 6 7 | eleqtrrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑃  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑄  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑃  ≠  𝑄 ) )  →  𝑃  ∈  ( 𝑃 Line 𝑄 ) ) |