Metamath Proof Explorer


Theorem linerflx1

Description: Reflexivity law for line membership. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linerflx1 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → 𝑃 ∈ ( 𝑃 Line 𝑄 ) )

Proof

Step Hyp Ref Expression
1 simpr1 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) )
2 colineartriv1 ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑃 Colinear ⟨ 𝑃 , 𝑄 ⟩ )
3 2 3adant3r3 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → 𝑃 Colinear ⟨ 𝑃 , 𝑄 ⟩ )
4 breq1 ( 𝑥 = 𝑃 → ( 𝑥 Colinear ⟨ 𝑃 , 𝑄 ⟩ ↔ 𝑃 Colinear ⟨ 𝑃 , 𝑄 ⟩ ) )
5 4 elrab ( 𝑃 ∈ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝑃 , 𝑄 ⟩ } ↔ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 Colinear ⟨ 𝑃 , 𝑄 ⟩ ) )
6 1 3 5 sylanbrc ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → 𝑃 ∈ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝑃 , 𝑄 ⟩ } )
7 fvline2 ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → ( 𝑃 Line 𝑄 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear ⟨ 𝑃 , 𝑄 ⟩ } )
8 6 7 eleqtrrd ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃𝑄 ) ) → 𝑃 ∈ ( 𝑃 Line 𝑄 ) )