Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ) |
2 |
|
colineartriv1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑃 Colinear 〈 𝑃 , 𝑄 〉 ) |
3 |
2
|
3adant3r3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → 𝑃 Colinear 〈 𝑃 , 𝑄 〉 ) |
4 |
|
breq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 Colinear 〈 𝑃 , 𝑄 〉 ↔ 𝑃 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
5 |
4
|
elrab |
⊢ ( 𝑃 ∈ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } ↔ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 Colinear 〈 𝑃 , 𝑄 〉 ) ) |
6 |
1 3 5
|
sylanbrc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → 𝑃 ∈ { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } ) |
7 |
|
fvline2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → ( 𝑃 Line 𝑄 ) = { 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑥 Colinear 〈 𝑃 , 𝑄 〉 } ) |
8 |
6 7
|
eleqtrrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑃 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑃 ≠ 𝑄 ) ) → 𝑃 ∈ ( 𝑃 Line 𝑄 ) ) |