| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> P e. ( EE ` N ) ) | 
						
							| 2 |  | colineartriv1 |  |-  ( ( N e. NN /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) -> P Colinear <. P , Q >. ) | 
						
							| 3 | 2 | 3adant3r3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> P Colinear <. P , Q >. ) | 
						
							| 4 |  | breq1 |  |-  ( x = P -> ( x Colinear <. P , Q >. <-> P Colinear <. P , Q >. ) ) | 
						
							| 5 | 4 | elrab |  |-  ( P e. { x e. ( EE ` N ) | x Colinear <. P , Q >. } <-> ( P e. ( EE ` N ) /\ P Colinear <. P , Q >. ) ) | 
						
							| 6 | 1 3 5 | sylanbrc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> P e. { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) | 
						
							| 7 |  | fvline2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) | 
						
							| 8 | 6 7 | eleqtrrd |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> P e. ( P Line Q ) ) |