Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> P e. ( EE ` N ) ) |
2 |
|
colineartriv1 |
|- ( ( N e. NN /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) -> P Colinear <. P , Q >. ) |
3 |
2
|
3adant3r3 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> P Colinear <. P , Q >. ) |
4 |
|
breq1 |
|- ( x = P -> ( x Colinear <. P , Q >. <-> P Colinear <. P , Q >. ) ) |
5 |
4
|
elrab |
|- ( P e. { x e. ( EE ` N ) | x Colinear <. P , Q >. } <-> ( P e. ( EE ` N ) /\ P Colinear <. P , Q >. ) ) |
6 |
1 3 5
|
sylanbrc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> P e. { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) |
7 |
|
fvline2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) |
8 |
6 7
|
eleqtrrd |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> P e. ( P Line Q ) ) |