| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 2 |  | simp3 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 3 |  | simp21 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> P e. ( EE ` N ) ) | 
						
							| 4 |  | simp22 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> Q e. ( EE ` N ) ) | 
						
							| 5 |  | colinearperm1 |  |-  ( ( N e. NN /\ ( x e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( x Colinear <. P , Q >. <-> x Colinear <. Q , P >. ) ) | 
						
							| 6 | 1 2 3 4 5 | syl13anc |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> x Colinear <. Q , P >. ) ) | 
						
							| 7 | 6 | 3expa |  |-  ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> x Colinear <. Q , P >. ) ) | 
						
							| 8 | 7 | rabbidva |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> { x e. ( EE ` N ) | x Colinear <. P , Q >. } = { x e. ( EE ` N ) | x Colinear <. Q , P >. } ) | 
						
							| 9 |  | fvline2 |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) | 
						
							| 10 |  | necom |  |-  ( P =/= Q <-> Q =/= P ) | 
						
							| 11 | 10 | 3anbi3i |  |-  ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) <-> ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ Q =/= P ) ) | 
						
							| 12 |  | 3ancoma |  |-  ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ Q =/= P ) <-> ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) | 
						
							| 13 | 11 12 | bitri |  |-  ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) <-> ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) | 
						
							| 14 |  | fvline2 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) -> ( Q Line P ) = { x e. ( EE ` N ) | x Colinear <. Q , P >. } ) | 
						
							| 15 | 13 14 | sylan2b |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( Q Line P ) = { x e. ( EE ` N ) | x Colinear <. Q , P >. } ) | 
						
							| 16 | 8 9 15 | 3eqtr4d |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = ( Q Line P ) ) |