| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> N e. NN ) |
| 2 |
|
simp3 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) |
| 3 |
|
simp21 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> P e. ( EE ` N ) ) |
| 4 |
|
simp22 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> Q e. ( EE ` N ) ) |
| 5 |
|
colinearperm1 |
|- ( ( N e. NN /\ ( x e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q e. ( EE ` N ) ) ) -> ( x Colinear <. P , Q >. <-> x Colinear <. Q , P >. ) ) |
| 6 |
1 2 3 4 5
|
syl13anc |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> x Colinear <. Q , P >. ) ) |
| 7 |
6
|
3expa |
|- ( ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) /\ x e. ( EE ` N ) ) -> ( x Colinear <. P , Q >. <-> x Colinear <. Q , P >. ) ) |
| 8 |
7
|
rabbidva |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> { x e. ( EE ` N ) | x Colinear <. P , Q >. } = { x e. ( EE ` N ) | x Colinear <. Q , P >. } ) |
| 9 |
|
fvline2 |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = { x e. ( EE ` N ) | x Colinear <. P , Q >. } ) |
| 10 |
|
necom |
|- ( P =/= Q <-> Q =/= P ) |
| 11 |
10
|
3anbi3i |
|- ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) <-> ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ Q =/= P ) ) |
| 12 |
|
3ancoma |
|- ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ Q =/= P ) <-> ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) |
| 13 |
11 12
|
bitri |
|- ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) <-> ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) |
| 14 |
|
fvline2 |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) -> ( Q Line P ) = { x e. ( EE ` N ) | x Colinear <. Q , P >. } ) |
| 15 |
13 14
|
sylan2b |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( Q Line P ) = { x e. ( EE ` N ) | x Colinear <. Q , P >. } ) |
| 16 |
8 9 15
|
3eqtr4d |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = ( Q Line P ) ) |