| Step |
Hyp |
Ref |
Expression |
| 1 |
|
necom |
|- ( P =/= Q <-> Q =/= P ) |
| 2 |
1
|
3anbi3i |
|- ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) <-> ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ Q =/= P ) ) |
| 3 |
|
3ancoma |
|- ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ Q =/= P ) <-> ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) |
| 4 |
2 3
|
bitri |
|- ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) <-> ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) |
| 5 |
|
linerflx1 |
|- ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) -> Q e. ( Q Line P ) ) |
| 6 |
4 5
|
sylan2b |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> Q e. ( Q Line P ) ) |
| 7 |
|
linecom |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = ( Q Line P ) ) |
| 8 |
6 7
|
eleqtrrd |
|- ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> Q e. ( P Line Q ) ) |