| Step | Hyp | Ref | Expression | 
						
							| 1 |  | necom |  |-  ( P =/= Q <-> Q =/= P ) | 
						
							| 2 | 1 | 3anbi3i |  |-  ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) <-> ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ Q =/= P ) ) | 
						
							| 3 |  | 3ancoma |  |-  ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ Q =/= P ) <-> ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) | 
						
							| 4 | 2 3 | bitri |  |-  ( ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) <-> ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) | 
						
							| 5 |  | linerflx1 |  |-  ( ( N e. NN /\ ( Q e. ( EE ` N ) /\ P e. ( EE ` N ) /\ Q =/= P ) ) -> Q e. ( Q Line P ) ) | 
						
							| 6 | 4 5 | sylan2b |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> Q e. ( Q Line P ) ) | 
						
							| 7 |  | linecom |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> ( P Line Q ) = ( Q Line P ) ) | 
						
							| 8 | 6 7 | eleqtrrd |  |-  ( ( N e. NN /\ ( P e. ( EE ` N ) /\ Q e. ( EE ` N ) /\ P =/= Q ) ) -> Q e. ( P Line Q ) ) |