Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. LinesEE -> A e. _V ) |
2 |
|
ovex |
|- ( p Line q ) e. _V |
3 |
|
eleq1 |
|- ( A = ( p Line q ) -> ( A e. _V <-> ( p Line q ) e. _V ) ) |
4 |
2 3
|
mpbiri |
|- ( A = ( p Line q ) -> A e. _V ) |
5 |
4
|
adantl |
|- ( ( p =/= q /\ A = ( p Line q ) ) -> A e. _V ) |
6 |
5
|
rexlimivw |
|- ( E. q e. ( EE ` n ) ( p =/= q /\ A = ( p Line q ) ) -> A e. _V ) |
7 |
6
|
a1i |
|- ( ( n e. NN /\ p e. ( EE ` n ) ) -> ( E. q e. ( EE ` n ) ( p =/= q /\ A = ( p Line q ) ) -> A e. _V ) ) |
8 |
7
|
rexlimivv |
|- ( E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ A = ( p Line q ) ) -> A e. _V ) |
9 |
|
eleq1 |
|- ( x = A -> ( x e. LinesEE <-> A e. LinesEE ) ) |
10 |
|
eqeq1 |
|- ( x = A -> ( x = ( p Line q ) <-> A = ( p Line q ) ) ) |
11 |
10
|
anbi2d |
|- ( x = A -> ( ( p =/= q /\ x = ( p Line q ) ) <-> ( p =/= q /\ A = ( p Line q ) ) ) ) |
12 |
11
|
rexbidv |
|- ( x = A -> ( E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) <-> E. q e. ( EE ` n ) ( p =/= q /\ A = ( p Line q ) ) ) ) |
13 |
12
|
2rexbidv |
|- ( x = A -> ( E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) <-> E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ A = ( p Line q ) ) ) ) |
14 |
|
df-lines2 |
|- LinesEE = ran Line |
15 |
|
df-line2 |
|- Line = { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) } |
16 |
15
|
rneqi |
|- ran Line = ran { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) } |
17 |
|
rnoprab |
|- ran { <. <. p , q >. , x >. | E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) } = { x | E. p E. q E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) } |
18 |
14 16 17
|
3eqtri |
|- LinesEE = { x | E. p E. q E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) } |
19 |
18
|
eleq2i |
|- ( x e. LinesEE <-> x e. { x | E. p E. q E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) } ) |
20 |
|
abid |
|- ( x e. { x | E. p E. q E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) } <-> E. p E. q E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) ) |
21 |
|
df-rex |
|- ( E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) <-> E. n ( n e. NN /\ ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) ) ) |
22 |
21
|
2exbii |
|- ( E. p E. q E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) <-> E. p E. q E. n ( n e. NN /\ ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) ) ) |
23 |
|
exrot3 |
|- ( E. n E. p E. q ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) <-> E. p E. q E. n ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) ) |
24 |
|
r2ex |
|- ( E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) <-> E. n E. p ( ( n e. NN /\ p e. ( EE ` n ) ) /\ E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) ) ) |
25 |
|
r19.42v |
|- ( E. q e. ( EE ` n ) ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) <-> ( ( n e. NN /\ p e. ( EE ` n ) ) /\ E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) ) ) |
26 |
|
df-rex |
|- ( E. q e. ( EE ` n ) ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) <-> E. q ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) ) |
27 |
25 26
|
bitr3i |
|- ( ( ( n e. NN /\ p e. ( EE ` n ) ) /\ E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) ) <-> E. q ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) ) |
28 |
27
|
2exbii |
|- ( E. n E. p ( ( n e. NN /\ p e. ( EE ` n ) ) /\ E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) ) <-> E. n E. p E. q ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) ) |
29 |
24 28
|
bitri |
|- ( E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) <-> E. n E. p E. q ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) ) |
30 |
|
anass |
|- ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) <-> ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) ) |
31 |
|
anass |
|- ( ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) /\ x = ( p Line q ) ) <-> ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) |
32 |
|
simplrl |
|- ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) -> n e. NN ) |
33 |
|
simplrr |
|- ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) -> p e. ( EE ` n ) ) |
34 |
|
simpll |
|- ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) -> q e. ( EE ` n ) ) |
35 |
|
simpr |
|- ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) -> p =/= q ) |
36 |
33 34 35
|
3jca |
|- ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) -> ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) |
37 |
32 36
|
jca |
|- ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) -> ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) ) |
38 |
|
simpr2 |
|- ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) -> q e. ( EE ` n ) ) |
39 |
|
simpl |
|- ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) -> n e. NN ) |
40 |
|
simpr1 |
|- ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) -> p e. ( EE ` n ) ) |
41 |
38 39 40
|
jca32 |
|- ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) -> ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) ) |
42 |
|
simpr3 |
|- ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) -> p =/= q ) |
43 |
41 42
|
jca |
|- ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) -> ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) ) |
44 |
37 43
|
impbii |
|- ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) <-> ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) ) |
45 |
44
|
anbi1i |
|- ( ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ p =/= q ) /\ x = ( p Line q ) ) <-> ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) /\ x = ( p Line q ) ) ) |
46 |
31 45
|
bitr3i |
|- ( ( ( q e. ( EE ` n ) /\ ( n e. NN /\ p e. ( EE ` n ) ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) <-> ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) /\ x = ( p Line q ) ) ) |
47 |
30 46
|
bitr3i |
|- ( ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) <-> ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) /\ x = ( p Line q ) ) ) |
48 |
|
fvline |
|- ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) -> ( p Line q ) = { x | x Colinear <. p , q >. } ) |
49 |
|
opex |
|- <. p , q >. e. _V |
50 |
|
dfec2 |
|- ( <. p , q >. e. _V -> [ <. p , q >. ] `' Colinear = { x | <. p , q >. `' Colinear x } ) |
51 |
49 50
|
ax-mp |
|- [ <. p , q >. ] `' Colinear = { x | <. p , q >. `' Colinear x } |
52 |
|
vex |
|- x e. _V |
53 |
49 52
|
brcnv |
|- ( <. p , q >. `' Colinear x <-> x Colinear <. p , q >. ) |
54 |
53
|
abbii |
|- { x | <. p , q >. `' Colinear x } = { x | x Colinear <. p , q >. } |
55 |
51 54
|
eqtri |
|- [ <. p , q >. ] `' Colinear = { x | x Colinear <. p , q >. } |
56 |
48 55
|
eqtr4di |
|- ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) -> ( p Line q ) = [ <. p , q >. ] `' Colinear ) |
57 |
56
|
eqeq2d |
|- ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) -> ( x = ( p Line q ) <-> x = [ <. p , q >. ] `' Colinear ) ) |
58 |
57
|
pm5.32i |
|- ( ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) /\ x = ( p Line q ) ) <-> ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) /\ x = [ <. p , q >. ] `' Colinear ) ) |
59 |
|
anass |
|- ( ( ( n e. NN /\ ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) ) /\ x = [ <. p , q >. ] `' Colinear ) <-> ( n e. NN /\ ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) ) ) |
60 |
47 58 59
|
3bitrri |
|- ( ( n e. NN /\ ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) ) <-> ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) ) |
61 |
60
|
3exbii |
|- ( E. p E. q E. n ( n e. NN /\ ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) ) <-> E. p E. q E. n ( q e. ( EE ` n ) /\ ( ( n e. NN /\ p e. ( EE ` n ) ) /\ ( p =/= q /\ x = ( p Line q ) ) ) ) ) |
62 |
23 29 61
|
3bitr4ri |
|- ( E. p E. q E. n ( n e. NN /\ ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) ) <-> E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) ) |
63 |
22 62
|
bitri |
|- ( E. p E. q E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) <-> E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) ) |
64 |
20 63
|
bitri |
|- ( x e. { x | E. p E. q E. n e. NN ( ( p e. ( EE ` n ) /\ q e. ( EE ` n ) /\ p =/= q ) /\ x = [ <. p , q >. ] `' Colinear ) } <-> E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) ) |
65 |
19 64
|
bitri |
|- ( x e. LinesEE <-> E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ x = ( p Line q ) ) ) |
66 |
9 13 65
|
vtoclbg |
|- ( A e. _V -> ( A e. LinesEE <-> E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ A = ( p Line q ) ) ) ) |
67 |
1 8 66
|
pm5.21nii |
|- ( A e. LinesEE <-> E. n e. NN E. p e. ( EE ` n ) E. q e. ( EE ` n ) ( p =/= q /\ A = ( p Line q ) ) ) |